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ABSTRACT

In this work, we consider the challenge of data analysis in a sce-

nario where data is stored across a local cluster and cloud resources.

We describe a software framework to enable data-intensive com-

puting with cloud bursting, i.e., using a combination of compute

resources from a local cluster and a cloud environment to perform

Map-Reduce type processing on a data set that is geographically

distributed. Our evaluation with three applications shows that data-

intensive computing with cloud bursting is feasible and scalable.

Particularly, as compared to a situation where the data set is stored

at one location and processed using resources at that end, the av-

erage slowdown of our system (using distributed but the same ag-

gregate number of compute resources), is only 15.55%. Thus, the

overheads due to global reduction, remote data retrieval, and poten-

tial load imbalance are quite manageable. Our system scales with

an average speedup of 81% when the number of compute resources

is doubled.

Categories and Subject Descriptors: H.3.4 [Information Storage

and Retrieval]: Systems and Software – Distributed Systems

General Terms: Design, Performance.

Keywords: Cloud Bursting, MapReduce, AWS, S3.

1. INTRODUCTION
For many organizations, one attractive use of cloud resources

can be through what is being referred to as cloud bursting or the

hybrid cloud. These are scenarios where an organization acquires

and manages in-house resources to meet its base need, but can also

harness additional resources from a cloud provider to maintain an

acceptable response time during workload peaks. Cloud bursting

can be an attractive model for organizations with a significant need

for HPC. But despite the interest in HPC on clouds, such organi-

zations can be expected to continue to invest in in-house HPC re-

sources, with considerations such providing best performance, “se-

curity” needs of certain applications, and/or desire for having more

control over the resources.

At the same time, through cloud bursting, organizations can also

avoid over-provisioning of base resources, while still providing users

better response time. In fact, it is quite well documented that users

routinely experience long delays while accessing resources from

supercomputing centers. As one data point, in 2007, the ratio be-

tween wait time and execution time was nearly 4 for the Jaguar

supercomputer at Oak Ridge National Lab (ORNL). Besides the
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need for reducing wait times for user satisfaction and productivity,

another consideration is of urgent high-end computations, where

certain compute-intensive applications rely on rapid response.

Cloud bursting has so far been associated with the use of addi-

tional computing resources from a cloud provider for applications.

We do not believe that it needs to be limited in this fashion. As next

generation applications are expected to see orders of magnitude in-

crease in data set sizes, cloud resources can be used to store addi-

tional data after local resources are exhausted. While the available

bandwidth to cloud-based storage is quite limited today, ongoing

developments (such as building dedicated high speed connections

between certain organizations and a cloud provider) are addressing

this issue. Thus, one can expect efficient storage and access to data

on cloud resources in the future.

In this work, we consider the challenge of data analysis in a sce-

nario where data is stored across local resource(s) and cloud re-

sources. Analysis of large-scale data, or data-intensive computing

has been a topic of much interest in recent years. Of particular in-

terest has been developing data-intensive applications using a high-

level API, primarily, Map-Reduce framework, or its variants. Map-

Reduce has interested cloud providers as well, with services like

Amazon Elastic MapReduce now being offered.

This work describes a middleware that supports Map-Reduce

type API in an environment where the data could be split between

a local cluster and a cloud resource. Data processing is then per-

formed using computing resources at both ends. However, to mini-

mize the overall execution time, we allow for the possibility that the

data at one end is processed using computing resources at another

end, i.e., work stealing. Our middleware considers the rate of pro-

cessing together with distribution of data to decide on the optimal

processing of data.

2. MIDDLEWARE DESIGN
Our proposed software framework can be viewed as an imple-

mentation of Map-Reduce that can support the transparent remote

data analysis paradigm. In this paradigm, analysis of data is spec-

ified with a high-level API (Map-Reduce or its variant), but the set

of resources for hosting the data and/or processing it are geograph-

ically distributed.

Figure 1 illustrates the execution paradigm facilitated by the mid-

dleware. The head node is responsible for inter-cluster communi-

cation and schedules jobs to be executed between clusters. Each

cluster is managed by its own master node, which communicates

directly with the head node and distributes the jobs to its slaves.

The actual work is performed on the slaves, which retrieve and

process the data.

Whenever a cluster’s job pool diminishes, its corresponding mas-



Figure 1: Middleware for Data Processing on Hybrid Clouds

ter requests jobs from the head node. The master then assigns a

group of jobs to the cluster based on data locality, e.g., if there are

locally available jobs in the cluster, then those will be assigned first.

Once all of the local jobs are processed, the remote jobs are selected

from files which the minimum number of nodes are processing to

reduce contention. Remote job processing is shown as “job steal-

ing” in the figure. After all the jobs are processed, the head node

enters the global reduction phase by requesting and combining the

locally reduced data and forming the final result.

The job assignments in our system include the metadata infor-

mation of the data chunks. Metadata information of a data chunk

consists of location, offset, and size of each unit data. When a

job is assigned to a slave, it retrieves the data chunk according to

the given metadata information. If the data chunk is locally avail-

able, continuous read operations are performed. However, if the

data chunk needs to be retrieved from a remote location, i.e. job

stealing, multiple retrieval threads are used to utilize the available

bandwidth. The processing of the data chunk begins at the slaves

following data retrieval.

Load balancing is maintained through the slaves’ on-demand job

request scheme. Clearly, the slave nodes that have higher through-

put (e.g., faster compute instances inside a cloud cluster) are ex-

pected to process more jobs. In similar fashion, a master node also

requests a group of jobs from the head on demand, thus ensuring

that the clusters with more computational throughput would per-

form more processing.

3. EXPERIMENTAL RESULTS
We execute kmeans application over five configurations. These

configurations involve the same aggregate computing power. In

the first two configurations, which are local and cloud, the

computing resources and the datasets are at the same location. In

other words, these two configurations involve centralized storage

and processing, and are used as the baseline. The next three con-

figurations involve a 50-50 split of computing power across local
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Figure 2: Cloud Bursting with KMeans Application

and cloud resources. Moreover, within these three configurations,

there is a varying amount of skew or unevenness in the distribu-

tion of data. The data distribution for env-33/67 is 33% (40GB)

of the data is hosted locally, while 67% (80GB) is being hosted

in Amazon S3. By varying the amount of data skew, we increase

the amount of remote data retrieval that may be needed, and thus

can observe its impact on the overall performance. The number

of cores is empirically determined according to the computational

power they provide. We set the throughput power of each cluster as

close as possible and evaluated the overhead of usage of the cloud

with the local resources.

In Figure 2(a), we can see that this application is dominated by

computation. Even high fraction of the data is stored in S3, the

computation time takes longer than the data retrieval time in lo-

cal cluster. The displacement of stored data from local clusters

to S3 is identical with moving locally available jobs to the cloud.

Therefore, the local cluster finishes its local jobs sooner and fetches

more from S3, which results in higher retrieval times on local clus-

ter. The overheads of the hybrid configurations are quite low. In

fact, env-17/83 is still performing at around 90% efficiency of

env-local.

In Figure 2(b), we show the scalability results of kmeans. Be-

cause kmeans is compute-intensive and the data set is fairly large,

the overall computation time is quite high. The synchronization

overhead in this set of experiment ranges from 0.1% to 2.5% and

the maximum synchronization overhead is seen in the (4, 4) con-

figuration on cloud cluster. The reason is that small number of

cores results in longer job processing times and the idle time of the

clusters increases.

We also repeated the same set of experiments with pagerank

and knn applications. Our results with these applications are simi-

lar to those of kmeans application.


