
A Compression Framework for Multi-Dimensional  
Scientific Datasets 

Introduction and Motivation 
• Data collected from instruments and 

simulation are extremely valuable 
• Data dissemination and analysis are 

complicated by the rapid growth of 
scientific data sizes 

• e.g., Global Cloud-Resolving Model 
(GCRM) produces 1PB of data for 4 
km grid size over 10 day simulation 

• Popular libraries for managing scientific 
datasets: NetCDF, PNetCDF, HDF5 etc.  

• Compression can help storage and transfer 

Challenges on Supporting Compression 
• Compression can introduce additional computational complexity 

• Domain specific properties of scientific  datasets can be exploited 
• Optimizations such as pipelining, parallel I/O and informed prefetching are desirable 

• A framework which supports PnP of compression and decompression algorithms is needed 
• Providing easy integration with data management and analysis software is challenging 

• Features of scientific dataset management libraries can be exploited 

Compression Method for Scientific Data 

Proposed Compression Framework and Integration with PNetCDF 

Experimental Results 

Current Research Focus 𝑥′[𝑖, 𝑗] =  
𝑥 𝑖, 𝑗 ,                          𝑗 = 0
𝑥[𝑖, 𝑗] ⊕ 𝑥[𝑖, 𝑗 − 1], 𝑗 > 0

 

 First below equation is applied to 
x, and x’ is generated 

• Most of the scientific datasets consist of single or double precision floating point numbers 
• These datasets are array-oriented and adjacent cells are closely related with each other 
• This relationship can be exploited with prediction-based differential compression  
• Example: Consider a climate dataset, 𝑥, that consists of temperature of different locations 

 Second, the leading zeros are counted 
and represented in bits 

 Third, the remaining part is 
appended and x’’ is generated 

• x’ is virtual and does not  require storage 
• Dropping least significant bits can further 

improve compression ratio (lossy) 

• We ported our comp. 
framework into 
PNetCDF library 

• This library provides 
space efficient, array 
oriented data access 
with high performance 
I/O using ROMIO 

• Widely used in 
scientific community 

• Olympus cluster at PNNL 
• Lustre file system (8 OSTs, 1MB) 
• Each node has 16 Cores  with 32 GB 

mem. (AMD Opteron 6272, 2.1GHz) 
• GCRM Data: 68GB (35.4GB Comp.) 

• Simulation of 256 time steps, covers 
28 km and 27 layers 

• Upto 16 nodes (256 cores) 
• Speedups for read ops. are between  

1.31 and 1.98 for =>8np config. 
• Speedups for write ops. are between  

1.52 and 2.07 for =>8np config. 
• Decompression overhead decreases 

while the # of processes increases 
• 32.1–3.5 % for =>8np config. 
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GCRM Dataset Read 
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GCRM Dataset Write 
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GCRM Dataset Read Breakdown 
Orig. Data Read Decompression Compressed Data Read

• Determining the best compress algorithm 
• Sample the dataset, calculate the benefit values  (comp. ratio vs. time) 

• Apply the best comp. alg., store this info. to record’s metadata  
• Find the optimum chunk size 

• Affects the comp. ratio as well as I/O throughput 
• Needs to exploit the parallel file system properties  

(e.g. stripe size, count) 
• Detecting the application direction of the comp. alg. 

• Higher success ratios for predicted values result 
in better comp. ratio 

• Transparent access to 
compressed data from 
application layer 

• Decoupled architecture 
between comp. engine 
and I/O layer 

• Support for informed 
prefetching and  
in-memory cache 
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