A Compression Framework for Multidimensional
Scientific Datasets

Tekin Bicer
Ohio State University
5th Year PhD Student
bicer @cse.ohio-state.edu

I. INTRODUCTION

Scientific simulations and instruments can generate tremen-
dous amount of data in short time periods. Since the generated
data is used for inferring new knowledge, it is important to
efficiently store and provide it to the scientific endeavors.
Although parallel and distributed systems can help to ease
the management of such data, the transmission and storage
are still challenging problems.

For instance, scientific experiments and instruments are
collecting data at increasing granularity. The Advanced LIGO
Project, funded with a $200 million investment from National
Science Foundation, is increasing the sensitivity of LIGO
(Laser Interferometer Gravitational-wave Observatories) by a
factor of 10, resulting in a three orders of magnitude increase
in the number of candidates for gravitational wave signals'.
The Global Cloud-Resolving Model (GCRM) is a simulation
model which can imitate the circulations that are related with
clouds. Currently, it uses a grid-cell size of 4 km. GCRM
can generate 1 petabyte of data for a 10 day simulation. It
is expected to simulate GCRM with higher density in the
future which eventually will result in more data generation. For
example, 1 km grid-cell size will expand the size of generated
data by 64 folds.

Although computational resources can cope up with these
rapidly growing datasets, it is difficult to transfer and store
them. One popular approach for reducing data transfer over-
heads is compression. Compression has recently been applied
for reading large files in parallel file systems. However, ef-
fectively supporting compression for scientific simulation data
and integrating compression with data-intensive applications
remains a challenge.

There are several libraries which are built to manage sci-
entific datasets, including netCDF and HDFS. These libraries
can help scientists to efficiently create and access the scien-
tific datasets. Furthermore, they can easily be integrated into
data-intensive applications. These software libraries provide
compression capabilities at some level. However, these com-
pression algorithms typically are generic and cannot perform
well on highly-entropic scientific datasets.

In our previous work [5], we proposed a compression
framework and methodology for scientific datasets. We ported

Uhttp://media.caltech.edu/press_releases/13123

Gagan Agrawal
Ohio State University
Student’s Advisor
agrawal @cse.ohio-state.edu

it into a data-intensive computing framework [4] and showed
its performance. In this work, we focus on management of
multidimensional scientific datasets. We adapt our framework
to PNetCDF [1] which is a set of parallel software libraries
for scientific datasets. Our framework and methodology exploit
the features of PNetCDF, and improve the performance of the
overall system.

II. RELATED WORK

The analysis of large-scale datasets has become a critical
challenge because of the management, transport, and access
to the data. This is especially true for scientific simulation
datasets such as earth’s climate system in which the size of
the dataset is hundreds of TBs [3] and data is geographically
distributed. The efforts and challenges of transferring and
accessing climate datasets have been shown in [11], [2].

Compression [13], [9] has been an attractive topic for
systems that deal with large datasets. The ultimate goals
of compression are to decrease the storage requirements of
the data, and maximize the I/O throughput of the systems.
Nicolae et al. developed BlobSeer, which is a distributed data
management service that provides efficient reading, writing
and appending functionalities to its users [16]. A recent work
by the same authors focuses on a transparent compression
system that is built in BlobSeer [15]. Their system provides
optimizations such as overlapping decompression with I/O
operations, and selecting the compression algorithm.

ISABELA-QA [12] is a parallel query processing engine
which exploits knowledge priors. It enables efficient process-
ing for both spatial-region and variable-centric queries using
compressed scientific datasets and indices.

Welton et al., developed a set of compression services
which transparently performs compression operations [18].
Their services run on data nodes which handle I/O requests.
Authors show that compression is more beneficial when 1/O
rate of the environment is low, and the computational demands
of the compression algorithm is small.

Our compression system focuses on implementation of
domain-specific compression algorithms, and improving their
efficiency through concurrency in different layers. We specif-
ically focus on multidimensional scientific datasets in which
such domain specific compression algorithms can easily be

implemented and result in high compression ratios and per-
formance.

Data-intensive computing is one of the areas which uses
compression extensively. Apache has initiated several projects
for large scale data analysis and storage, such as Hadoop
and HBase. These systems use generic compression al-
gorithms, such as LZO, in order to optimize I/O opera-
tions. Similarly, Google’s data storage and analysis system,
MapReduce[8] and BigTable[6], take advantage of different
compression algorithms, e.g. Snappy. Another data analysis
system, DryadLINQ[20], also uses compression for its inter-
mediate data exchange, thus enhancing the I/O throughput.

During the evaluation of our work, we ported our system
into PNetCDF. Our results show that applications can further
maximize the utilization of I/O resources through domain-
specific compression algorithms and parallelization.

Compression has also been used for enhancing the perfor-
mance and storage of cache and memory[10], [17], [19]. A
recent work of Makatos et al. introduced FlaZ, a transpar-
ent compression system, which enhances the performance of
SSD-based caches [14]. FlaZ, works in the kernel level and
resides in I/O path of user application and SSD. It provides
two generic compression algorithms, zlib and LZO, and 1/O
concurrency. If the storage medium can handle parallel /O
requests, e.g. SSDs, concurrent operations can significantly
increase the performance. Our work also considers the high-
degree of parallelism in these type of storage units. Further-
more, it uses prefetching and in-memory caching to increase
performance.

There have been studies about the effects of using com-
pression on energy efficiency of data-intensive applications
and modern datacenters. In [7], authors propose a decision
algorithm which lets users identify if compression is beneficial
or not in terms of energy consumption. Authors implement
their system in MapReduce and show that compression can
increase the energy efficiency up to 60%. Our system uses
CPU cycles for concurrent decompression and I/O requests
in order to increase the performance of the system. This
can result in higher energy consumption, however we believe
that the gained data transfer time through compression can
amortize and further improve the energy efficiency.

III. PROPOSED COMPRESSION FRAMEWORK FOR
SCIENTIFIC DATASETS

In this section we describe our compression framework and
method which can be applied to different types of multidimen-
sional scientific datasets.

A. Proposed Compression Framework

Our compression framework provides transparent
(de)compression operations with highly parallel computation
and I/O capabilities. Therefore, clients can interact with
compressed datasets as if they are original dataset. Our
framework offers several important features:

An API which eases the implementation of different
compression algorithms:

Our compression framework requires two basic functions to
be implemented, encode and decode. The encode function is
responsible for compressing the given data chunk, whereas
the decode function decompresses the compressed data
chunk. After these functions are implemented, the framework
automatically divides user provided data into slices and
applies these functions. For example, consider a climate
dataset which consists of temperature information of an area
at different times. This information can be stored in three
dimensional array, namely time, longitude and latitude. The
compression framework can slice the dataset on time and
longitude dimensions. Then, it can transparently (de)compress
these chunks during read and write operations.
Optimizations on data access:

Our framework applies several optimizations in order to in-
crease the performance of data access operations. The first
optimization is the pipelined chunk processing. Since the
dataset is divided into small independent chunks, they can
concurrently be processed. Specifically, our system can fetch
multiple chunks at a time, and process them simultaneously.
Second, our framework provides an interface in which user can
analyze the previously accessed chunks, and define customized
prefetching algorithms. This enables our system to request
compressed chunks in advance, and cache them. The results
of this part can be found in our previous work [5].
Determining the best compression algorithm:

A user can implement a set of compression algorithms using
our compression framework. However, finding the optimal
compression algorithm for a given dataset is a challenging
problem. Considering the size of the scientific dataset, it
is typically infeasible to apply all compression algorithms.
In order to find the best compression algorithm, datasets
can be sliced and sampled. Then implemented compression
algorithms can be applied to the samples. Once the best
performing algorithm is determined, this information can be
stored as metadata information, and the remaining chunks can
be compressed.

Finding the optimal chunk sizes:

Compression algorithms are sensitive to chunk sizes. Typi-
cally, larger chunk sizes result in better compression ratios.
However, this might translate into longer compression times
and redundant data decompression. For example, the com-
pression framework needs to decompress the whole chunk,
even though user wants to access a small portion. Therefore,
it is important to find the optimum chunk size for best
performance.

Application of compression algorithm:

Similar to detect the best compression algorithm, it is also
important to determine how the algorithm is being applied to
the dataset. The slice operation can be applied to different
dimensions. Moreover, the data items in a slice may logically
be related. For instance, if we consider the aforementioned
climate dataset again, we can expect temperature values to be
more related on latitude dimension. This information can be

exploited in order to increase the compression ratio.

We implemented and ported our prototype in Parallel
NetCDF. PNetCDF uses ROMIO, an MPI-IO library, for
concurrency. Thus, it can provide efficient access to scientific
datasets. Our system performs (de)compression operations
before MPI-IO calls. Therefore, only the compressed data is
transferred through network, which maximizes the bandwidth
utilization.

B. Compression Method

Our compression method is based on differential com-
pression. After analyzing the scientific datasets which are
stored in multidimensional arrays, we observed that adjacent
data elements’ values are typically related with each other.
Our compression methodology exploits this observation and
provides high I/O throughput along with decent compression
ratios.

As an example, consider the aforementioned climate dataset
values which consist of temperature of different altitudes at a
given area in different time slices. Since adjacent locations are
expected to have similar temperature values, a dataset specific
differential compression algorithm can be developed.

Algorithm 1: Climate Data Compression
Input: temp_latitude, n_longitude, n_cells
Output: comp_temp

for) =0 to n_cells — 1 do
L comp_temp,, ; = temp_latitude,, ;;

for i« = 1 to n_longitude — 1 do
for j =0 to n_cells — 1 do
cellp = temp_latitudei_L s
cell; = temp_latitudei’ K
comp = celly @ celly;
n_zeros = clz(comp);
append(comp_temp, pack(n_zeros, comp));

In Algorithm 1, we show the pseudocode of our climate data
compression. The algorithm reads the temperatures of different
altitudes with temp_latitude matrix. The columns and the
rows of the matrix correspond to the longitudes and altitudes,
respectively. The algorithm uses exclusive or, &, operation to
relate neighbor cells. Notice that the computed value, comp,
depends on the cells that are on the same latitude and altitude,
but on different longitude. This approach exploits the temper-
ature information of the cells. Specifically, the temperatures of
neighboring cells which are at the same altitude and latitude
are close to each other. Therefore more information can be
extracted and used for compression through relating these
cells. The xor operation results in a variable which can be
examined in two parts: leading zeros and difference. The
difference part represents the bits that differ celly from celly
whereas the leading zeros show the overlapping data. Next
the algorithm counts the number of leading zeros and packs

them with difference part. We assume that append function
adjusts the comp_temp, thus the next iteration writes to the
next available bit position. For single-precision floating point
numbers, the total number of zeros can be up to 32 which
can be represented by 5 bits. Therefore, this approach can
compress climate data with a maximum of 32:5 compression
ratio. Decompression algorithm reverses the operations. First,
the compressed values are read, and the leading zeros are
expanded. Then, @ is applied to the resulting values and the
original data is derived.

Since both compression and decompression operations rely
on the xor operation, the performance of the algorithm is very
high. The effectiveness of the compression method and its
comparison with other algorithms can be found in [5].

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our preliminary
experiments. Specifically, we evaluated the performance of the
aforementioned compression framework.

We used GCRM simulation dataset for our evaluation. This
is a multidimensional dataset where the dimensions consist
of time step, longitude, latitude and altitude information,
respectively. Each of the cells in the dataset consists of a
single-precision floating point number which refers to the
temperature of a given location at a specific time. The total
size of the dataset is 68GB which covers 28km with 27 layers,
and the total number of time steps is 256.

We performed our experiments on the Olympus cluster
at Pacific Northwest National Labratories. Two versions of
dataset are created, compressed and original. The compressed
dataset size is 35.4GB. In order to provide high I/O throughput,
datasets are stored in Lustre parallel file system. The total
number of Object Storage Targets (OSTs) is set to 8, and
the stripe size is configured as 1MB. We used up to 16
machines for evaluation of the performance of our approach.
Each machine has 32GB memory and 16 physical cores, where
each of these cores is an AMD Opteron 6272 with a 2.1GHz
clock rate.

In Figure 1(a), we present the execution times of read
operation with increasing number of compute nodes. The Read
Original version shows the read performance of the original
data, whereas the Read Compressed represents the compressed
dataset.The Y-axis shows the execution times in seconds. The
N is the number of allocated nodes, and np is the total number
of processes that run on these nodes. For example, 2N-32np
represents the configuration where 2 nodes are allocated, and
32 MPI processes are launched.

The original data read operation performs better than the
compressed read operation from 2np to 8np configuration.
However, after 8np the compressed version provides better I/O
throughput. Since the number of OSTs is set to 8, the original
dataset can be read efficiently up to 8 processes. However after
this configuration, the I/O resources become scarce. Therefore,
the read operations start benefiting from the compression. The
speedups of using compression after 8np configuration range
between 1.31 and 1.98.

GCRM Dataset Read

Read Compressed Read Original

7

AN\

L L L
N@Q :9/0 ,&:“‘Q
N N

! S R
S i
~ » N B

o
&
K

(a) Read Operations

GCRM Dataset Write

B Write Compressed B Write Original

<

.
§
\
.
\
.
.

D

» » N &

(b) Write Operations

Fig. 1. Evaluation of Data Access Operations with Compression

In Figure 1(b), we show the performance of write opera-
tion with and without compression. The compressed version
performs better than original version in all configurations.
Since the write operations can return before the data is
actually written to the disk, compressed version shows better
performance.

V. CONCLUSION

In this work, we focus on management of multidimen-
sional scientific datasets using domain specific compression
algorithms. We have built and ported our framework into
PNetCDF. Our preliminary results show that modified version
of differential compression is effective in both compression
ratio and performance.

In the future, we would like to investigate different ways
to improve compression ratio and performance. These include
implementing more domain-specific compression algorithms
and finding the best one for a given dataset; detecting the
best chunk size for compression; and finding the application
direction of compression algorithm to the data chunks.

ACKNOWLEDGMENT

This work was carried out in collaboration with David Chiu
at Washington State University, Jian Yin and Karen Schuchardt
at Pacific Northwest National Laboratory.

REFERENCES

[1] Parallel NetCDF: A High Performance API for NetCDF File Ac-
cess. http://www.mcs.anl.gov/parallel-netcdf, 2012. [Online; accessed
September-2012].

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

W. E. Allcock, I. T. Foster, V. Nefedova, A. L. Chervenak, E. Deelman,
C. Kesselman, J. Lee, A. Sim, A. Shoshani, B. Drach, and D. N.
Williams. High-performance remote access to climate simulation data:
a challenge problem for data grid technologies. In SC, page 46, 2001.
D. E. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A. L.
Chervenak, L. Cinquini, B. Drach, I. T. Foster, P. Fox, J. Garcia,
C. Kesselman, R. S. Markel, D. Middleton, V. Nefedova, L. Pouchard,
A. Shoshani, A. Sim, G. Strand, and D. N. Williams. The earth system
grid: Supporting the next generation of climate modeling research.
CoRR, abs/0712.2262, 2007.

T. Bicer, D. Chiu, and G. Agrawal. A framework for data-intensive
computing with cloud bursting. In CLUSTER, pages 169-177, 2011.
T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt. Integrating
online compression to accelerate large-scale data analytics applications.
In IPDPS, 2013, To be published.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2),
2008.

Y. Chen, A. Ganapathi, and R. H. Katz. To compress or not to compress
- compute vs. io tradeoffs for mapreduce energy efficiency. In P. Barford,
J. Padhye, and S. Sahu, editors, Green Networking, pages 23-28. ACM,
2010.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107-113, 2008.

F. Douglis. On the role of compression in distributed systems. SIGOPS
Oper. Syst. Rev., 27(2):88-93, Apr. 1993.

M. Ekman and P. Stenstrom. A robust main-memory compression
scheme. In Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd
International Symposium on, pages 74 — 85, june 2005.

R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P.-T. Bremer, J. Bresna-
han, A. Cherry, L. Childers, E. Dart, I. Foster, K. Harms, J. Hick, J. Lee,
M. Link, J. Long, K. Miller, V. Natarajan, V. Pascucci, K. Raffenetti,
D. Ressman, D. Williams, L. Wilson, and L. Winkler. Lessons learned
from moving earth system grid data sets over a 20 gbps wide-area
network. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC 2010), Jun 2010.
S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla,
S.-H. Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova. Isabela-qa: query-driven analytics with
isabela-compressed extreme-scale scientific data. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC *11, pages 31:1-31:11, New York, NY, USA,
2011. ACM.

D. A. Lelewer and D. S. Hirschberg. Data compression. ACM Comput.
Surv., 19(3):261-296, 1987.

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas.
Using transparent compression to improve ssd-based i/o caches. In
C. Morin and G. Muller, editors, EuroSys, pages 1-14. ACM, 2010.
B. Nicolae. High throughput data-compression for cloud storage. In
A. Hameurlain, F. Morvan, and A. Tjoa, editors, Data Management
in Grid and Peer-to-Peer Systems, volume 6265 of Lecture Notes in
Computer Science, pages 1-12. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-15108-81.

B. Nicolae, G. Antoniu, and L. Bougé. Blobseer: how to enable efficient
versioning for large object storage under heavy access concurrency.
In Proceedings of the 2009 EDBT/ICDT Workshops, EDBT/ICDT °09,
pages 18-25, New York, NY, USA, 2009. ACM.

L. Rizzo. A very fast algorithm for ram compression. SIGOPS Oper.
Syst. Rev., 31(2):36-45, Apr. 1997.

B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. B.
Ross. Improving i/o forwarding throughput with data compression. In
CLUSTER, pages 438445, 2011.

P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for compressed
caching in virtual memory systems. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATEC °99, pages
8-8, Berkeley, CA, USA, 1999. USENIX Association.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. Dryadling: A system for general-purpose distributed data-
parallel computing using a high-level language. In R. Draves and R. van
Renesse, editors, OSDI, pages 1-14. USENIX Association, 2008.

