
1

An Autonomic Framework for Time and Cost

Driven Execution of MPI Programs on Cloud

Environments
Aarthi Raveendran Tekin Bicer Gagan Agrawal

Department of Computer Science and Engineering, Ohio State University

{raveendr,bicer,agrawal}@cse.ohio-state.edu

Abstract—This paper gives an overview of a framework for
making existing MPI applications elastic, and executing them
with user-specified time and cost constraints in a cloud frame-
work. Considering the limitations of the MPI implementations
currently available, we support adaptation by terminating one
execution and restarting a new program on a different number
of instances. The key component of our system is a decision layer.
Based on the time and cost constraints, this layer decides whether
to use fewer or a larger number of instances for the applications,
and when appropriate, chooses to migrate the application to a
different type of instance. Among other factors, the decision layer
also models the redistribution costs.

I. INTRODUCTION AND OVERVIEW

A. Motivation

Multiple cloud providers are now specifically targeting HPC

users and applications. The key attractions of cloud include

the pay-as-you-go model and elasticity. Thus, clouds allow

the users to instantly scale their resource consumption up or

down according to the demand or the desired response time.

While executing HPC applications on a cloud environment,

it will clearly be desirable to exploit elasticity of cloud envi-

ronments, and increase or decrease the number of instances

an application is executed on during the execution of the

application. For a very long running application, a user may

want to increase the number of instances to try and reduce the

completion time of the application. Another factor could be

the resource cost. If an application is not scaling in a linear or

close to linear fashion, and if the user is flexible with respect to

the completion time, the number of instances can be reduced,

resulting in lower nodes× hours, and thus a lower cost.

Unfortunately, HPC applications have almost always been

designed to use a fixed number of resources, and cannot

exploit elasticity. Most parallel applications today have been

developed using the Message Passing Interface (MPI). MPI

versions 1.x did not have any support for changing the number

of processes during the execution. While this changed with

MPI version 2.0, this feature is not yet supported by many

of the available MPI implementations. Moreover, significant

effort is needed to manually change the process group, and

redistribute the data to effectively use a different number of

processes.

We are developing a framework for making existing MPI ap-

plications elastic, and executing them with user-specified time

and cost constraints in a cloud framework. Considering the

limitations of the MPI implementations currently available, we

support adaptation by terminating one execution and restarting

a new program on a different number of instances. To enable

this, we create a modified version of the original program.

This version of the code allows monitoring of the progress and

communication overheads, and can terminate at certain points

(typically, at the end of an iteration of the outer time-step loop)

while outputting the live variables at that point. Moreover, it

is capable of restarting the computation, by reading the live

variables, and knowing the iteration to restart with.

B. Overview of the Functionality

We consider two constraints that can be specified by the

user. The user defined constraints are either based on a specific

time frame within which the user would want the application

to complete, or based on a threshold value of the cost that they

are willing to spend. Clearly, it is possible that the execution

cannot be finished within the specified time or the cost. Thus,

these constraints are supposed to be soft and not hard, i.e, the

system makes the best effort to meet the constraints.

Our framework specifically assumes that the target HPC

application is iterative in nature, i.e., it has a time-step loop

and the amount of work done in each iteration is approximately

the same. This assumption has two important consequences.

First, the start of each (or every few) iteration(s) of the time-

step loop becomes a convenient point for monitoring of the

progress of the application. Second, because we only consider

redistribution in between iterations of the time-step loop, we

can significantly decrease the check-pointing and redistribution

overhead. Particularly, a general check-pointing scheme will

not only be very expensive, it also does not allow redistribution

of the data to restart with a different number of nodes.

Fig. 1. Components of Our Framework



2

In our framework, each process stores a portion of the array

that needs to be collected and redistributed to a file in the local

directory. Other components of our framework are informed

of the decision of the monitoring layer to expand or shrink

the resources. The application returns true if the solution is

converged, so that the decision layer does not restart it again.

In case, the solution is not converged, false is returned which

indicates that restarting and redistribution are necessary. The

application is terminated and the master node collects the

data files from the worker nodes and combines them. After

launching the new nodes or deallocating the extra nodes based

on the decision made by the monitoring layer, the decision

layer in the master node splits the data and redistributes it to

the new set of nodes.

The application is started again and all the nodes read the

local data portions of the live arrays that were redistributed

by the decision layer. The main loop is continued from this

point and the monitoring layer again measures the average

iteration time and makes a decision during the monitoring

interval. If the need of restarting does not arise and the

desired iteration time is reached, then the application continues

running. Otherwise, the same procedure of writing the live data

to local machines, copying them to master node and restarting

the processes are repeated.

II. DECISION LAYER

As stated in the previous section, we focus on iterative

applications that do a constant amount of work at each

iteration. The time taken per iteration, which is communicated

by the application to the decision layer, is, therefore, used

to determine the progress of the application. In addition to

this, the communication time between nodes is also taken

into consideration, as an increase in the communication time

impacts scalability. For communication-intensive applications,

an increase in the number of nodes will certainly not result

in linear or close to linear scalability. If we need to meet

a time constraint, it is desirable to switch to more powerful

processing nodes (such as a large instances in EC2), rather

than increasing the number of instances. On the other hand,

if cost is a constraint, one can scale down to fewer nodes to

improve cost-effectiveness. This is because using half as many

nodes will likely not slow down the application by a factor of

two, and therefore, the product of time and node count will

be lower.

We consider two situations separately: 1) the user might

have a fixed time constraint, and 2) the user might have a

fixed cost constraint. We briefly discuss the main steps for

first case here.

Suppose the application is executing on nc nodes. The time

elapsed is ttn. Of the total of ittot iterations over which

the application has to be executed, itrem are remaining, i.e.,

ittot − itrem iterations have been executed. Therefore, the

time spent per iteration with nc nodes is tpi =
ttn

ittot − itrem
The time taken for one iteration on one node (assuming

perfect scalability) is given by nc × tpi. Time taken for

remaining iterations on the new number of nodes, np, is

given by
nc×tpi×itrem

np
. Since this value should ideally be

tc − ttn, the number of nodes required can be calculated as:

np =

nc×tpi×itrem

tc−ttn
. Note, however, that the this analysis is

based on the assumption of perfect scalability, which is rarely

true for applications. To some extent, this can be overcome

by the fact that the above analysis is applied repeatedly, and

therefore, additional nodes can be added later to meet the

constraint. But, we do not use the above model at all for

communication-intensive applications. Instead, these applica-

tions are transferred to a cluster built of large instances in EC2

which are likely to allow speedups even for communication-

intensive applications.

III. EXPERIMENTAL RESULTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

800 900 1000 1100 1200 1400

A
c
tu

a
l 

T
im

e
 (

in
 s

e
c
s
)

Time Constraint (in secs)

Fig. 2. Time Constraints vs Actual Time - Jacobi

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

800 900 1000 1100 1200 1400

F
in

a
l 
N

u
m

b
e
r 

o
f 

N
o

d
e
s

Time Constraint (in secs)

Fig. 3. Time Constraint vs Nodecount - Jacobi

We briefly describe the results obtained from Jacobi, ex-

ecuted with different time constraints. Since the amount of

time spent on interprocess communication is relatively small,

this application can be scaled by adding additional instances.

Figure 2 shows the application execution time obtained by our

framework in response to different time constraints. It can be

observed that the actual time taken is less than the constraint

specified, for time constraint values other than 800 seconds.

In this case, the system is not able to meet the requirements

even with maximum number of nodes it could allocate (which

was 19 nodes in our experiments). Figure 3 shows the final

node count values for different time constraints. We can see

that the framework does not overallocate nodes, instead, it

uses an appropriate number of instances to just meet the time

constraint. A lower the time constraints, a higher number of

instances are allocated. For the time constraint of 800 seconds,

the system uses 19 nodes , which is the maximum possible in

our experiments. For each higher time constraint, the decision

layer allocates fewer nodes so that the cost is minimized as

much as possible, at the same time keeping the total process

time within the given limit.


