
Supporting Dynamic Load Balancing in a Parallel Data Mining Middleware

Tekin Bicer Gagan Agrawal
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{bicer,agrawal}@cse.ohio-state.edu

Abstract
As parallel data mining applications are being executed in
grid and cloud settings, there is a need for considering virtu-
alized, non-dedicated, and/or heterogeneous environments.
Supporting dynamic load balancing becomes an important
challenge in such environments. Particularly, two important
problems that need to be addressed are: Optimal distribu-
tion of tasks among disparate processing units and minimiz-
ing the runtime overhead of the system. With these goals,
this paper describes and evaluates an approach for enabling
parallel data mining with dynamic load balancing. Our ap-
proach is based on an API which deals with independent data
elements that can be processed by any processing resource in
the system.

We have extensively evaluated our dynamic load balanc-
ing system using two parallel data mining applications. Our
results show that the overheads of our scheme are extremely
low. Furthermore, our system successfully distributes tasks
among processing units even in highly heterogeneous con-
figurations.

1 Introduction
Increasingly, data mining needs to be performed in grid and
cloud environments, leading to the supporting execution in
non-dedicated and/or heterogeneous clusters. As science has
become increasingly data-driven, support for data-intensive
computing is becoming a crucial component of the cyber-
infrastructure or e-science. For example, community-driven
data grids have received significant attention recently [2].
Grids inherently comprise heterogeneous resources, and of-
ten include non-dedicated use of resources.

More recently, the trend is towards data-intensive com-
puting on the emerging cloud environments. Two common
characteristics of cloud environments are also leading to non-
dedicated use of resources, and/or execution in heteroge-
neous environments. The first is the use of virtualization
technologies, which enable applications to set up and deploy
a customized virtual environment suitable for their execu-
tion. The second is the pay-as-you-go model for resource
allocation and pricing. Consistent with the utility vision

of computing, recent research points to the progression of
clouds towards supporting fine-grained sharing of CPU cy-
cles (and memory) between instances [3, 4]. Current vir-
tualization technologies (for example, Xen [5]) can already
allow a change in CPU cycle percentage and/or memory al-
location at any point during the execution. Thus, in a cloud
environment, it is quite possible that an application may be
executed on a set of machines that differ in CPU cycle per-
centage allocation, and furthermore, this allocation can even
change over time for each node.

Overall, there is clearly a need for executing data-
intensive applications with dynamic load balancing, and
harnessing the net processing power available in the cluster.
This paper presents an approach for addressing this problem.
Our approach has been implemented in the context of a data-
intensive computing middleware, FREERIDE-G [6, 7]. This
middleware system uses a specialized API for developing
scalable data-intensive applications. It supports remote data
analysis, which implies that data is processed on a different
set of nodes than the ones in which it is hosted. Our
work on supporting dynamic load balancing exploits the
processing structure supported by our API, particularly, the
fact that independent data elements can be processed by
any processing resources in the system. This enables us
to dynamically assign tasks to the processing units without
considering the order or dependencies of the tasks.

We have evaluated how effectively our dynamic load
balancing system can perform using two data mining appli-
cations. Our results show that the overheads of our system
are negligible. Furthermore, our load balancing approach
can effectively distribute jobs among the processing units
even in highly heterogeneous configurations.

2 Background
This section gives an overview of an API on which our
work is based. We then describe the remote data analysis
paradigm and the FREERIDE-G system, which uses this API
and supports remote data analysis.

FREERIDE
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Process(e) ;
RObj(i) = Reduce(RObj(i),val) ;

}
Global Reduction to Combine RObj

}

Map-Reduce
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Process(e) ;
}
Sort (i,val) pairs using i
Reduce to compute each RObj(i)

}

Figure 1: Processing Structure: FREERIDE(top) and Map-
Reduce(bottom)

2.1 API for Parallel Data-Intensive Computing: Be-
fore describing our alternative API, we initially review the
map-reduce API which is now being widely used for data-
intensive computing.

The map-reduce programming model can be summa-
rized as follows [8]. The user of the map-reduce library
expresses the computation as two functions: Map and Re-
duce. Map, written by the user, takes a set of input points
and produces a set of intermediate {key, value} pairs. The
map-reduce library groups together all intermediate values
associated with the same key and passes them to the Reduce
function. The Reduce function, also written by the user, ac-
cepts a key and a set of values for that key. It merges together
these values to form a possibly smaller set of values. Typi-
cally, only zero or one output value is produced per Reduce
invocation.

Now, we describe the alternative API this work is based
on. This API has been used in a data-intensive computing
middleware, FREERIDE, developed at Ohio State [9, 10].
This middleware system for cluster-based data-intensive pro-
cessing shares many similarities with the map-reduce frame-
work. However, there are some subtle but important dif-
ferences in the API offered by these two systems. First,
FREERIDE allows developers to explicitly declare a reduc-
tion object and perform updates to its elements directly,
while in Hadoop/map-reduce, the reduction object is implicit
and not exposed to the application programmer. Another im-
portant distinction is that, in Hadoop/map-reduce, all data

elements are processed in the map step and the intermedi-
ate results are then combined in the reduce step, whereas in
FREERIDE, both map and reduce steps are combined into a
single step in which each data element is processed and re-
duced before the next data element is processed. This choice
of design avoids the overhead due to sorting, grouping, and
shuffling, which can be significant costs in a map-reduce im-
plementation.

Hadoop/map-reduce provides Combiner function which
can partially decrease the sorting, grouping and data trans-
fer overheads. More specifically, if a Combiner function
is defined in the system, the pairs are grouped in different
lists according to their key values on local machine. When
the number of pairs exceeds a threshold, Combiner func-
tion reduces the pairs and emits the new ones. Typically,
Combiner function is similar to Reduce function, however
it processes the pairs that are already in local memory. Re-
duce function, on the otherhand, needs to collect the emitted
pairs. FREERIDE-G processing structure naturally accumu-
lates {key, value} pairs right after their generation which
avoids the mentioned overheads in map-reduce.

The following functions must be written by an applica-
tion developer as part of the API:
Local Reductions: The data instances owned by a processor
and belonging to the subset specified are read. A local
reduction function specifies how, after processing one data
instance, a reduction object (declared by the programmer),
is updated. The result of this process must be independent
of the order in which data instances are processed on each
processor. The order in which data instances are read from
the disks is determined by the runtime system.
Global Reductions: The reduction objects on all processors
are combined using a global reduction function.
Iterator: A parallel data-intensive application comprises
of one or more distinct pairs of local and global reduction
functions, which may be invoked in an iterative fashion.
An iterator function specifies a loop which is initiated after
the initial processing and invokes local and global reduction
functions.

Throughout the execution of the application, the reduc-
tion object is maintained in main memory. After every itera-
tion of processing all data instances, the results from multi-
ple threads in a single node are combined locally depending
on the shared memory technique chosen by the application
developer. After local combination, the results produced by
all nodes in a cluster are combined again to form the final
result, which is the global combination phase. The global
combination phase can be achieved by a simple all-to-one
reduce algorithm. If the size of the reduction object is large,
both local and global combination phases perform a parallel
merge to speed up the process. The local combination and
the communication involved in the global combination phase
are handled internally by the middleware and is transparent

to the application programmer.
Fig. 1 further illustrates the distinction in the processing

structure enabled by FREERIDE and map-reduce. The
function Reduce is an associative and commutative function.
Thus, the iterations of the for-each loop can be performed
in any order. The data-structure RObj is referred to as the
reduction object.

Our recent work has shown a substantial performance
improvement with our API [11]. In addition, we believe
that this API offers a significant advantage in supporting
dynamic load balancing. Since, almost all of the execution
time is spent in the local reduction stage, the processing
can be distributed between the nodes in a non-uniform and
dynamic fashion. In comparison, with a map-reduce API,
for most applications, significant amount of time is spent on
both map and reduce stages. Moreover, the reduce stage is
dependent on a large intermediate data structure, which can
make dynamic load balancing very difficult to support.

2.2 Remote Data Analysis and FREERIDE-G: Our
support for dynamic load balancing is in the context of sup-
porting transparent remote data analysis. In this model, the
resources hosting the data, the resources processing the data,
and the user may all be at distinct locations. Furthermore,
the user may not even be aware of the specific locations of
data hosting and data processing resources.

If we separate the concern for supporting dynamic load
balancing, co-locating data and computation, if feasible,
achieves the best performance. However, there are several
scenarios co-locating data and computation may not be
possible. For example, in using a networked set of clusters
within an organizational grid for a data processing task, the
processing of data may not always be possible where the
data is resident. There could be several reasons for this.
First, a data repository may be a shared resource, and cannot
allow a large number of cycles to be used for processing
of data. Second, certain types of processing may only be
possible, or preferable, at a different cluster. Furthermore,
grid technologies have enabled the development of virtual
organizations [12], where data hosting and data processing
resources may be geographically distributed.

The same can also apply in cloud or utility computing.
A system like Amazon’s Elastic Compute Cloud has a sep-
arate cost for the data that is hosted, and for the computing
cycles that are used. A research group sharing a dataset may
prefer to use their own resources for hosting the data. The
research group which is processing this data may use a dif-
ferent set of resources, possibly from a utility provider, and
may want to just pay for the data movement and processing
it performs. In another scenario, a group sharing data may
use a service provider, but is likely to be unwilling to pay for
the processing that another group wants to perform on this
data. As a specific example, the San Diego Supercomput-

ing Center (SDSC) currently hosts more than 6 Petabytes of
data, but most potential users of this data are only allowed to
download, and not process this data at SDSC resources. The
group using this data may have its own local resources, and
may not be willing to pay for the processing at the same ser-
vice provider, thus forcing the need for processing data away
from where it is hosted.

When co-locating data and computation is not possible,
remote data analysis offers many advantages over another
feasible model, which could be referred to as data staging.
Data staging implies that data is transferred, stored, and then
analyzed. Remote data analysis requires fewer resources
at the data analysis site, avoids caching of unnecessary or
process once data, and may abstract away details of data
movement from application developers and users.

We now give a brief overview of the design and im-
plementation of the FREERIDE-G middleware. More de-
tails are available from our earlier publications [13, 7]. The
FREERIDE-G middleware is modeled as a client-server sys-
tem, where the compute node clients interact with both data
host servers and a code repository server. The overall system
architecture is presented in Figure 2.

A data host runs on every on-line data repository node
in order to automate data retrieval and its delivery to the
end-users’ processing node(s). Because of its popularity, for
this purpose we used Storage Resource Broker, a middle-
ware that provides distributed clients with uniform access
to diverse storage resources in a heterogeneous computing
environment. The code repository is used to store the im-
plementations of the FREERIDE-G-based applications, as
specified through the API. A compute node client runs on
every end-user processing node in order to initiate retrieval
of data from a remote on-line repository, and perform appli-
cation specific analysis of the data, as specified through the
API implementation. The processing is based on the generic
loop we described earlier, and uses application specific iter-
ator and local and global reduction functions.

Figure 2 demonstrates the interaction of system compo-
nents. Once data processing on the compute node has been
initiated, data index information is retrieved by the client and
a plan of data retrieval and analysis is created. In order to
create this plan, a list of all data chunks is extracted from the
index. From the work-list a schedule of remote read requests
is generated to each data repository node. After the creation
of the retrieval plan, the SRB-related information is used by
the compute node to initiate a connection to the appropriate
node of the data repository and to authenticate such connec-
tion. The connection is initiated through an SRB Master,
which acts as a main connection daemon. To service each
connection, an SRB Agent is forked to perform authentica-
tion and other services, with MCAT metadata catalog pro-
viding necessary information to the data server. Once the
data repository connection has been authenticated, data re-

Compute Node

Retrieval
Metadata
Data &

client
SRB

MPICH−G2

Globus Toolkit

FREERIDE−G

Parallel Reduction

Execution
Data Analysis

Code
Loader

Resource Allocation

Code Repository
Agent
SRB

MCAT

SRB Master

Data Host

Data Analysis Planning

API functions

Figure 2: FREERIDE-G System Architecture

trieval through an appropriate SRB Agent can commence.
To perform data analysis, the code loader is used to retrieve
application specific API functions from the code repository
and to apply them to the data.

3 Supporting Dynamic Load Balancing for Remote
Data Analysis

In this section, we describe our dynamic load balancing ap-
proach and its implementation in the context of FREERIDE-
G.

3.1 Our Approach: In the previous version of our mid-
dleware, the workflow of the application was set at the very
beginning of the execution. Moreover, the jobs were evenly
distributed among the compute nodes and each compute
node was responsible for processing only its own jobs. If the
compute nodes have different processing powers, the static
job distribution may result in a large slowdown. Specifically,
the compute nodes which have high throughput will have to
wait until the slowest compute node finishes its execution.

Our approach for supporting dynamic load balanc-
ing exploits the properties of the processing structure of
FREERIDE-G. Let us consider the processing structure sup-
ported by our middleware, shown earlier in Figure 1. As-
sume that the set of data elements to be processed is E. Fur-
thermore, suppose a subset Ei of these elements is processed
by the processor i, resulting in RObj(Ei). Let G be the
global reduction function, which combines the reduction ob-
jects from all nodes, and generates the final results.

The key observation in our approach is as follows.
Consider any possible disjoint partition E1, E2, . . . , En of
the processing elements between n nodes. The result of the

C 0 C n....

D 0 D n....

JSStep 3

Group 1

Group 2

Step 2

Step 1

Figure 3: Load Balancing System’s Workflow

global reduction function,

(3.1) G(RObj(E1), RObj(E2), . . . , RObj(En))

will be same for any such disjoint partition of the element set
E. In other words, if E1, E2, . . . , En and E′

1
, E′

2
, . . . , E′

n

are two disjoint partitions of the element set E, then,

(3.2) G(RObj(E1), RObj(E2), . . . , RObj(En)) =

G(RObj(E′

1
), RObj(E′

2
), . . . , RObj(E′

n))

If we examine the Equation (3.2), we can conclude that
the processing structure that supports independent data ele-
ments can be exploited for dynamic load balancing system.

Specifically, any element, Ei, can be requested by any pro-
cessing unit in the system during the execution. Therefore,
the processing units which have high throughput can request
and process more data elements than the others.

Input: dataNodes, List of data nodes that were
registered to job scheduler

Result: job, which is assigned to compute node
/* Execute request handler loop */
while true do

compNode← ReceiveReq();
if CheckAssigned(compNode) then

SetProcessed(compNode, dataNodes);
end
dataNode← AvailDataNode(dataNodes);
chunkNumb← GetChunkNumb(compNode);
job← CreateJob(dataNode, chunkNumb);
Transfer(job, compNode);
if IsNotEmpty(job) then

Assign(compNode,dataNode);
end

end
Algorithm 1: Assigning jobs to Compute Nodes

However, implementing such a dynamic scheme is also
challenging. If all compute nodes request every chunk from
a central scheduler, the overheads can be very high. Thus,
while our approach is based on a central job scheduler, this
scheduler works at a higher granularity. A compute node
makes a request for a set of chunks to the job scheduler.
The scheduler, then, returns a job, which includes the data
node and the set of assigned chunk information. This chunk
information consist of the exact offset addresses of the data
elements in the data node. When the compute node receives
the job, it starts retrieving the specified chunks from the data
node.

A compute node again contacts the scheduler after the
set of chunks have been retrieved from the data host and
processed. This process is repeated until there is no more
data to be processed. This scheduler is able to balance the
workload between compute nodes with different processing
power, while keeping the overheads very low.

3.2 Detailed Design and Implementation: We now dis-
cuss how our approach is implemented in FREERIDE-G.
Figure 3 shows the interaction among the system elements.
Group 1 refers to the compute nodes, C0···n, which are re-
sponsible for the processing of the data elements. Data nodes
are represented with D0···n in Group 2 where the data ele-
ments, i.e. chunks, are stored. It should also be noted that
Group 1 and Group 2 are geographically separated. The JS,
job scheduler, collects the necessary data information from

Input: numbChunks, Number of chunks per job
request

: scheduler, Job Scheduler
Result: Final ReductionObject

/* Execute outer sequential loop */
while true do

/* Execute job request loop */
while true do

job← RequestJob(numbChunks, scheduler);
if CheckJob(job) then

break;
end
dataNode← GetDataNode(job);
chunksInfo← GetChunksInfo(job);
foreach chunk info cinfo in chunksInfo do
{* Retrieve data chunk chk with cinfo

from dataNode *};
{* Process retrieved data chunk *};
{* Update reduction object *};

end
end
{* Perform Global Reduction *};

end
Algorithm 2: Processing Chunks on Compute Node

Group 2 and then distributes the jobs to the compute nodes
in Group 1.

Initially, the metadata information about the data needs
to be prepared by data nodes in Group 2. The data in the
system is stored in several files in which data is packed in
data chunks (block). The metadata information about these
chunks are stored into an index file. In this, each data chunk
location is described with a data file name, offset address and
the size of the data chunk. Each of these index information
also corresponds to a metadata information of the smallest
job in the system. Several of these index information can be
combined and coarse-grained jobs can be generated.

After index information is generated, each data node
in Group 2 prepares its specific node information which
consists of the address information, available bandwidth of
the data node and the chunk information of the data. It is
then registered to the scheduler.

Job scheduler, on the other hand, waits for the data
node registration requests. Whenever a registration request
is received, the scheduler adds the data node information to
the dataNodes list. This interaction is illustrated by Step 1 in
Figure 3.

After data nodes are registered and chunk information
are specified in the scheduler, the job requests are handled.
Algorithm 1 shows how the scheduler manages the compute
nodes, which is also shown in Figure 3 with Step 2. At first,

the scheduler waits for the job requests from the compute
nodes. When a job request is received, the scheduler checks
if any of the chunks in the system was previously assigned
to the requesting compute node. If so, the scheduler sets
them as processed. Then, it creates another job with a new
set of chunk information from the most suitable data node
in the system. The main consideration for the scheduler
in choosing a data node is effectively dividing the available
bandwidth from each data node. Therefore, if the bandwidth
between all pairs of compute nodes and data nodes is the
same, the data node mapping will be done in a round
robin fashion. If available bandwidths vary, more compute
nodes’ requests will be mapped to the data nodes with
higher bandwidth, as long as they still have data that needs
to be processed. Since the data and compute nodes are
geographically separated, the bandwidth utilization and data
node mapping are crucial for the overall execution time.
After creating the job from a data node, it is transfered to
the requesting compute node.

When a compute node receives a job from scheduler,
it extracts the chunk information and starts requesting the
chunks from the corresponding data node. With the retrieval
of the data, the compute node starts executing the local
reduction phase. When the data processing stage is finished,
the compute node asks for another job. This continues
until all the chunks are consumed. At last, all compute
nodes finalize their execution with global combination. This
process is shown in Algorithm 2.

4 Experimental Results
In this section, we report results from a number of experi-
ments that evaluate our approach for supporting load balanc-
ing.

Two data-intensive applications we used are k-means
clustering and Principal Component Analysis. Most of our
experiments with k-means used a 25.6 GB dataset, whereas
a 17 GB dataset was used for PCA. While our experiments
with k-means involved only 1 iteration over the dataset, those
for PCA had 3 iterations. As a result, the total amount of
requested data is 51 GB for PCA application. All the datasets
are divided into 4096 data blocks. Therefore, the sizes of
each data block for k-means and PCA are 6.4 MB and 4 MB,
respectively.

The configuration used for our experiments is as fol-
lows. Our compute nodes have dual processor Opteron 254
(single core) with 4GB of RAM and are connected through
Mellanox Infiniband (1 Gb). We report experiments from
the use of 4, 8, and 16 computing nodes. The number of data
hosting nodes is always 4, and the data blocks are evenly
distributed among these 4 nodes.

4.1 Effectiveness and Overheads: In this set of experi-
ments, we evaluated the effectiveness and overheads of our

Figure 4: Evaluating Overheads using K-means clustering
(25.6 GB dataset)

Figure 5: Evaluating Overheads using PCA (17 GB dataset)

dynamic load balancing system. For this experiment, we ex-
ecuted each of the two different versions of the middleware
in two different environments. The two versions of the mid-
dleware are: Without load balancing system support, WOLB,
and with load balancing system support, WTLB. WOLB is the
first version of the FREERIDE-G, and is not able to balance
the load among the compute nodes. Thus, the data elements
are distributed evenly between the compute nodes and all the
compute nodes have to wait until the slowest compute node
finishes its processing. On the other hand, the enhanced ver-
sion, WTLB, can dynamically balance the load between com-
pute nodes.

The two environments in which we executed these two
versions were the regular homogeneous cluster, and an envi-
ronment with slowdown. Here, half of the compute nodes

are slowed down by 50% of their real processing power. The
regular environment is also referred to as no slowdown.

In Figure 4, we present results from k-means applica-
tion. The overheads of the load balancing system in no
slowdown environments are 2.69% for 8 and close to 0%
for 4 and 16 compute node cases. This shows that the imple-
mentation of our dynamic scheme is very efficient, and does
not cause noticeable overheads.

In the slowdown environment, the speedups of the
system range from 1.46 to 1.50 over the static partitioning
system.

We can further analyze the costs of our load balancing
implementation. The absolute overhead of the system can be
calculated with the expected execution time of FREERIDE-
G with WOLB (slowdown) configuration , say timeexp,
which has the perfect data distribution among its compute
nodes; and the execution time of WTLB (slowdown) con-
figuration , say timewtlb. The perfect data distribution for
WOLB (slowdown), in this case, means the data distribu-
tion among the compute nodes that satisfy the same execu-
tion time for every compute node. For instance, if half of the
compute nodes in the system are limited to use 50% percent-
age of their CPU power and can process 450 data chunks dur-
ing the execution, then the compute nodes which have 100%
percentage CPU utilization are expected to process 900 data
chunks in the same time period. With such configuration,
the data chunks are perfectly distributed and the execution
time of the system, timeexp, is optimum. Consequently, the
absolute overhead can be found with:

(4.3) overheadabsolute =
timewtlb − timeexp

timeexp

If we apply (4.3) to Figure 4, then the absolute overheads
of our system are again close to 0% for the three compute
node cases. The retrieval and the processing time of the
assigned data dominate the communication time between the
scheduler and the compute nodes. Moreover, the scheduler
can successfully select the appropriate data node in which
compute node can benefit from the available bandwidth and
maximize its data transfer speed.

In Figure 5, the same combination of versions and
environments are repeated with PCA as the application. The
overheads of the no slowdown version and the absolute
overheads are close to 0%. The speedups of our system with
slowdown version change from 1.49 to 1.52, considering
without load balancing system with slowdown version.

4.2 Overheads With Different Slowdown Ratios: The
experiments that we reported in previous section, half of the
compute nodes were 50% slowed down. In this subsection,
we evaluate our system’s performance with two additional
slowdown ratios: 25% and 75%. These slowdowns are
applied to half of the compute nodes, again.

Figure 6: K-means clustering with Different Slowdown
Ratios (6.4 GB dataset, 8 comp. nodes)

In Figure 6, we evaluated the k-means clustering appli-
cation with 8 compute nodes and a 6.4 GB dataset. The abso-
lute overheads, in each case, are close to 0%. The speedups
of our system with respect to WOLB are 1.21, 1.53, and 2.57
for 25%, 50% and 75% slowdowns, respectively. The higher
slowdown ratios indicate longer execution times for slow
processing units. Furthermore, the system should wait for
the slowest processing unit in case of static job assignment,
i.e. WOLB configuration. On the other hand, the faster com-
pute nodes can consume slow compute nodes’ data elements
with WTLB configuration which results in high speedups.

Same experiment was repeated with PCA and the results
are shown in Figure 7. The absolute overheads are 3.50%,
1.63% and 4.07% for the three cases. Furthermore, the
speedups over the static case are 1.23, 1.49 and 2.42 for
25%, 50% and 75% slowdown ratios, respectively. As we
mentioned before, the PCA has three iterations, and requests
more data elements (3 times) than k-means application.
Moreover, the volume of retrieved data is significantly larger
than the other configurations. Thus, the overheads become
more visible.

4.3 Distribution of Data Elements with Varying Slow-
down Ratios: In this section, we focused on how success-
fully our system distributes data elements among the com-
pute nodes. In previous sections, the slowdown ratios were
kept same for all the applied compute nodes. However, in
this set of experiments, we varied the slowdown ratios be-
tween 8 compute nodes. More specifically, the slowdown
ratios are increased by 12.5% for each of the compute node
starting from 0%.

We showed the number of processed data elements for
each of the compute node in Figure 8. The last bar in

Figure 7: PCA with Different Slowdown Ratios (4 GB
dataset, 8 comp. nodes)

the figure shows the expected number of data elements that
need to be processed in case of perfect CPU utilization
for all compute nodes. The number of processed chunks
ranges from 109 to 161 for consecutively slowed down
processing units. The absolute overhead of our system is
again very close to 0%. These results show that our system
can successfully distribute the chunks even in a highly
heterogeneous environment.

In Figure 9, we repeated our experiment with PCA
application. Note that the total number of chunks is three
times more than the k-means clustering application due to the
iterations. The number of processed chunks ranges from 233
to 477 for consecutively slowed down compute nodes. The
absolute overhead in this case is 8.5%. The basic reasons of
this overhead are the high imbalance in the CPU utilization
among the processing units, and the number of iterations
which results in more job requests to the scheduler.

4.4 Overheads with Different Assignment Granularity:
In all experiments reported in previous subsections, the
scheduler was set to assign 4 data chunks for every job
request. In this subsection, the number of assigned data
chunks per request is varied. K-means clustering application
with 6.4 GB dataset was used for the evaluation; and the
assigned data chunks per request were changed to 4, 16, 64
and 256, respectively.

The results are shown in Figure 10. The absolute over-
heads are 0.72%, 1.58%, 6.31% and 16.01% for 4, 16, 64,
and 256 data chunks cases, respectively. The load balancing
system’s overhead increases with the increasing number of
data chunks per request, and a fine-grained assignment re-
sults in the best performance for our system. This is because
the overheads of dynamic load balancing are still very low

Figure 8: K-means clustering with Different Slowdown
Distribution (6.4 GB dataset, 8 comp. nodes)

with fine-grained assignments. At the same time, the per-
formance with coarse-grained assignments is worse, because
we do not achieve perfect load balance.

5 Related Work
The topics of data-intensive computing and map-reduce have
received much attention within the last 2-3 years. Projects in
both academia and industry are working towards improving
map-reduce. CGL-MapReduce [14] uses streaming for all
the communications, and thus improves the performance to
some extent. Mars [15] is the first attempt to harness GPU’s
power for map-reduce.

Yahoo’s map-reduce system, Hadoop, is one of the pop-
ular implementations. Even though, our system and Hadoop
share important similarities, the differences are significant.
Hadoop assigns tasks to the racks where data locality is max-
imized and high throughput is satisfied. Our system, on the
other hand, works in the context of remote data analysis in
which exploiting such locality is not possible. However, our
system minimizes the data retrieval time through exploiting
bandwidth usage of the data nodes which results in optimum
computation throughput.

Lin et al. extended Hadoop with MOON [16] which pro-
vides better performance in unreliable volunteer computing
systems using a small set of dedicated nodes. Our dynamic
load balancing system extends our previous work which fo-
cuses on fault tolerance [17] in data-intensive computing
environments. We believe our system can also perform well
in such unreliable environments.

Farivar et al. introduced an architecture named
MITHRA [18] and integrated the Hadoop map-reduce with
the power of GPGPUs in the heterogeneous environments.
Zaharia et al. [19] improved Hadoop response times by de-

Figure 9: PCA with Different Slowdown Distribution (4 GB
dataset, 8 comp. nodes)

signing a new scheduling algorithm in a virtualized data cen-
ter. Seo et al. [20] proposed two optimization schemes,
prefetching and pre-shuffling, to improve Hadoop’s overall
performance in a shared map-reduce environment. Ranger
et al. [21] have implemented Phoenix, a map-reduce system
for multi-cores.

Facebook uses Hive [22] as the warehousing solution
to support data summarization and ad-hoc querying on top
of Hadoop. Yahoo has developed Pig Latin [23] and
Map-Reduce-Merge [24], both of which are extensions to
Hadoop, with the goal being to support more high-level
primitives and improve the performance. Google has devel-
oped Sawzall [25] on top of map-reduce to provide higher-
level API. Microsoft has built Dryad [26], which is more
flexible than map-reduce, since it allows execution of com-
putations that can be expressed as DAGs.

OpenMP is an API which supports parallel shared mem-
ory processing on many architectures and supports differ-
ent scheduling strategies such as static, dynamic and guided
work sharing. However, the programmer should involve
solving the data dependencies and synchronization issues.
These are automatically handled by our framework.

6 Conclusions
In this work, we developed and evaluated a dynamic load
balancing scheme for a data-intensive computing middle-
ware. We focused on heterogeneous environments such as
non-dedicated machines in grids and virtualized machines in
clouds. We proposed an approach which effectively solves
the problem of task distribution among processing units that
show different processing performance.

Two data-intensive applications were used in order to
evaluate the system. Our results show that the overheads

Figure 10: Performance with Different Number of Chunks
per Request (k-means, 6.4 GB dataset, 4 comp. nodes)

of our system are very small. Moreover, our approach can
successfully distribute tasks among processing units even in
highly heterogeneous configurations.

References

[1] R. E. Bryant, “Data-intensive supercomputing: The case
for disc,” School of Computer Science, Carnegie Mellon
University, Tech. Rep. Technical Report CMU-CS-07-128,
2007.

[2] T. Scholl, A. Reiser, and A. Kemper, “Collaborative query co-
ordination in community-driven data grids,” in Proceedings of
the Conference on High Performance Distributed Computing
(HPDC), Jun. 2009.

[3] J. Heo, X. Zhu, P. Padala, and Z. Wang, “Memory overbook-
ing and dynamic control of xen virtual machines in consol-
idated environments,” in Proceedings of the IFIP/IEEE In-
ternational Symposium on Integrated Network Management
(IM09), June 2009, pp. 630–637.

[4] H. Lim, S. Babu, J. Chase, and S. Parekh, “Automated
control in cloud computing: Challenges and opportunities,”
in Proceedings of the 1st Workshop on Automated Control for
Datacenters and Clouds (ACDC09), June 2009, pp. 13–18.

[5] P.Barham, B.Dragovic, K.Fraser, S.Hand, T.Harris, A.Ho,
R.Neugebauer, I.Pratt, and A.Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP03), 2003, pp. 64–
177.

[6] L. Glimcher and G. Agrawal, “A Performance Prediction
Framework for Grid-based Data Mining Applications,” in In
proceedings of International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2007.

[7] ——, “A Middleware for Developing and Deploying Scalable
Remote Mining Services,” in In proceedings of Conference on
Clustering Computing and Grids (CCGRID), 2008.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of OSDI, 2004,
pp. 137–150.

[9] R. Jin and G. Agrawal, “A middleware for developing parallel
data mining implementations,” in Proceedings of the first
SIAM conference on Data Mining, Apr. 2001.

[10] ——, “Shared Memory Parallelization of Data Mining Al-
gorithms: Techniques, Programming Interface, and Perfor-
mance,” in Proceedings of the second SIAM conference on
Data Mining, Apr. 2002.

[11] W. Jiang, V. T. Ravi, and G. Agrawal, “Comparing map-
reduce and freeride for data-intensive applications,” in Pro-
ceedings of the 2009 IEEE Cluster. IEEE, 2009.

[12] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
Grid: Enabling Scalable Virtual Organizations,” International
Journal of Supercomputing Applications, 2001.

[13] L. Glimcher, R. Jin, and G. Agrawal, “FREERIDE-G: Sup-
porting Applications that Mine Data Repositories,” in In pro-
ceedings of International Conference on Parallel Processing
(ICPP), 2006.

[14] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data
intensive scientific analyses,” in IEEE Fourth International
Conference on e-Science, Dec 2008, pp. 277–284.

[15] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
Proceedings of PACT 2008. ACM, 2008, pp. 260–269.

[16] H. Lin, J. Archuleta, X. Ma, W. Feng, Z. Zhang, and M. Gard-
ner, “Moon: Mapreduce on opportunistic environments,” in
ACM International Symposium on High Performance Dis-
tributed Computing (HPDC), June 2010.

[17] T. Bicer, W. Jiang, and G. Agrawal, “Supporting fault tol-
erance in a data-intensince computing middleware,” in Pro-
ceedings of the 24th International Parallel and Distributed
Processing Symposium (IPDPS), April 2010.

[18] R. Farivar, A. Verma, E. Chan, and R. Campbell, “Mithra:
Multiple data independent tasks on a heterogeneous resource
architecture,” in Proceedings of the 2009 IEEE Cluster.
IEEE, 2009.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments,” in Proceedings of OSDI. USENIX
Association, 2008, pp. 29–42.

[20] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng,
“Hpmr: Prefetching and pre-shuffling in shared mapreduce
computation environment,” in Proceedings of the 2009 IEEE
Cluster. IEEE, 2009.

[21] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski,
and C. Kozyrakis, “Evaluating mapreduce for multi-core
and multiprocessor systems,” in Proceedings of 13th HPCA.
IEEE Computer Society, 2007, pp. 13–24.

[22] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. An-
thony, H. Liu, P. Wyckoff, and R. Murthy, “Hive - a warehous-
ing solution over a map-reduce framework,” PVLDB, vol. 2,
no. 2, pp. 1626–1629, 2009.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,”
in Proceedings of SIGMOD Conference. ACM, 2008, pp.
1099–1110.

[24] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr., “Map-
reduce-merge: simplified relational data processing on large
clusters,” in Proceedings of SIGMOD Conference. ACM,
2007, pp. 1029–1040.

[25] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Inter-
preting the data: Parallel analysis with sawzall,” Scientific
Programming, vol. 13, no. 4, pp. 277–298, 2005.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2007 EuroSys Conference.
ACM, 2007, pp. 59–72.

