
MATE-EC2: A Middleware for Processing
Data with AWS

Tekin Bicer David Chiu† Gagan Agrawal
Department of Computer Science and Engineering, Ohio State University

† School of Engineering and Computer Science, Washington State University

Abstract—Recently, there has been growing interest in using
Cloud resources for a variety of high performance and data-intensive
applications. While there is currently a number of commercial Cloud
service providers, Amazon Web Services (AWS) appears to be the
most widely used. One of the main services that AWS offers is
the Simple Storage Service (S3) for unbounded reliable storage of
data, which is particularly amenable to data-intensive processes.
Certainly, for these types of applications, we need support for
effective retrieval and processing of data stored in S3 environments.

In this paper, we focus on parallel and scalable processing of
data stored in S3, using compute instances in AWS. We describe
a middleware, MATE-EC2, that allows specification of data pro-
cessing using a high-level API, which is a variant of the Map-
Reduce paradigm. We show various optimizations, including data
organization, job assignment, and data retrieval strategies, that can
be leveraged based on the performance characteristics of S3. Our
middleware is also capable of effectively using a heterogeneous
collection of EC2 instances for data processing. Our detailed
experimental study further evaluates what factors impact efficiency
of retrieving and processing S3 data. We compare our middleware
with Amazon Elastic Map-Reduce and show how we determine the
best configuration for data processing on AWS.

I. INTRODUCTION

The outset of Cloud computing has been apropos in facilitating
today’s increasingly data-intensive projects. In response to the
data deluge, processing times can be expedited by harnessing
the Cloud’s resource elasticity, i.e., the ability for on-demand
allocation of compute instances and ostensibly infinite storage
units. While Cloud providers continue to grow in number,
Amazon Web Services (AWS) has gained marked popularity
among various stakeholders. AWS offers several services that
are highly amenable for supporting data-intensive applications.
For instance, the Simple Storage Service (S3) allows for highly
accessible, reliable, and “infinite” data store. Certainly for data-
intensive applications, one important consideration would involve
the effective retrieval and processing of data based in S3. Another
AWS service is the Elastic Compute Cloud (EC2), where virtual
machine instances of varying capabilities, with varying pricing
costs, can be leased for unbounded amounts of time — a
welcome departure from traditional advanced resource reservation
schemes.

This notion of on-demand resources has already prompted
many users to adopt the Cloud for large-scale projects, including
medical imaging [19], astronomy [5], BOINC applications [13],
and remote sensing [15], among many others. Another distinct
set of data-intensive applications fall under the Map-Reduce
framework [3]. Spurred by its popularity, support for Map-
Reduce was quickly embraced by prominent Cloud providers. The
Hadoop-oriented [8] AWS version (Elastic Map-Reduce) allows

users to upload their map and reduce code, as well as their data
sets onto S3. Elastic Map-Reduce then launches a user-specified
number of machine instances, and proceeds to invoke the code,
thereby abstracting processing nuances from users.

Cloud environments and their use for high-performance and
data-intensive applications are still quite new. Much effort is
needed in understanding the performance characteristics of these
environments. Similarly, we feel that additional services and tools
should be developed for enabling wider use of these environments
for end applications.

This paper focuses on the above two goals in the context of
developing data-intensive applications on AWS. Particularly, the
goal is to be able to use a (possibly heterogeneous) collection of
EC2 instances to scalably and efficiently process data stored in
S3. We have developed a Cloud middleware, MATE-EC2 (Map-
reduce with AlternaTE api over EC2), which deploys a variation
of the Map-Reduce API over Amazon’s EC2 and S3 services. We
show that various optimizations based on S3’s characteristics can
be applied to improve performance. Particularly, we have used
threaded data retrieval to improve the effective bandwidth of
data retrieval. Additionally, our selective job assignment strategy
ensures that different threads read data from different data objects
in S3, thus avoiding bottleneck. We also show that heterogeneous
clusters of various EC2 instance types can be leveraged effec-
tively in our middleware.

Our experimental study reveals several issues which affect
the retrieval and processing of data stored in S3. We show that
with increasing chunk sizes, the data processing times increase,
but the data retrieval times decrease. We also evaluate the
optimal number of data retrieval threads for each data processing
thread leads for our applications. Overall, for three popular
data-intensive applications, we report excellent scalability with
increasing number of compute instances. Furthermore, we are
able to exploit the aggregated computing power of a heteroge-
neous cluster very effectively. Finally, we achieve a performance
improvement ranging between 3 and 28 against Amazon Elastic
MapReduce for our data-intensive applications.

The rest of this paper is organized as follows. In Section II,
we discuss the background on AWS and Map-Reduce. We focus
on considerations for system design in Section III. A nuanced
experimental evaluation is described in Section IV, which is
followed by a discussion of related research efforts in Section
V. Finally, we summarize our conclusions and discuss future
directions in Section VI.

II. BACKGROUND

In this section, we present the background on data storage and
computing on the Amazon Web Services (AWS) public Cloud,
as well as on Map-Reduce and Amazon Elastic Map-Reduce.

A. Computing and Data Storage with AWS

AWS offers many options for on-demand computing as part
of their Elastic Compute Cloud (EC2) service. EC2 nodes (in-
stances) are virtual machines that can launch snapshot images of
operating systems. These images can be deployed onto various in-
stance types (the underlying virtualized architecture) with varying
costs depending on the instance type’s capabilities. For example, a
Small EC2 Instance (m1.small), according to AWS1 at the time
of writing, contains 1.7 GB memory, 1 virtual core (equivalent to
a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor), and 160
GB disk storage. Many other such instance types exist, also with
varying costs and capabilities.

Amazon’s persistent storage framework, Simple Storage Ser-
vice (S3), provides a key-value store. Typically, the unique keys
are represented by a filename and the path to the bucket which
contains it, and the values are themselves the data objects. While
the objects are limited to 5 TB, the number of objects that can be
stored in S3 is unrestricted. Aside from the simple API, the S3
architecture has been designed to be highly reliable and available.
It is furthermore very inexpensive in terms of price to store data
on S3.

B. Map-Reduce and Amazon Elastic Map-Reduce

Map-Reduce [4] was proposed by Google for application
development on data-centers with thousands of computing nodes.
It can be viewed as a middleware system that enables easy
development of applications that process vast amounts of data
on large clusters. Through a simple interface of two functions,
map and reduce, this model facilitates parallel implementations
of many real-world tasks, ranging from data processing for search
engine support to machine learning [2], [6].

The main benefits of this model are in its simplicity and
robustness. Map-Reduce allows programmers to write functional
style code that is easily parallelized and scheduled in a cluster
environment. One can view Map-Reduce as offering two im-
portant components [18]: a practical programming model that
allows users to develop applications at a high level and an
efficient runtime system that deals with the low-level details.
Parallelization, concurrency control, resource management, fault
tolerance, and other related issues are handled by the Map-Reduce
runtime.

Map-Reduce implementations, particularly the open-source
Hadoop, have been used on various clusters and data centers
[8]. In fact, AWS also offers Hadoop as a service called Amazon
Elastic Map-Reduce, which allows processing of data hosted on
S3 while using EC2 compute instances. For users of AWS, Elastic
Map-Reduce serves as a high-level framework for data analysis,
without having to perform substantial software installation. Fur-
thermore, for users of Hadoop or Map-Reduce, Amazon Elastic
MapReduce also alleviates the need for owning and/or managing
their own cluster.

1AWS Instance Types, http://aws.amazon.com/ec2/instance-types

III. SYSTEM DESIGN

This section describes the design of the MATE-EC2 middle-
ware. We will first describe the API for high-level specification
of the data processing task, followed by a nuanced discussion of
the middleware design.

A. Processing API

In this subsection, we describe the details of the Map-Reduce
programming model and our alternate API implemented in the
MATE-EC2 system, which we refer to as the generalized reduc-
tion API.

reduce()map()

(k1,v)

(k2,v)

(k1,v)

(k2,v)
(k2,v)

...

result

(k1,v)
(k1,v)

(k3,v)...
input data shuffle

Map-Reduce API

...

(k1,v')
(k2,v')
(k3,v')

...

...

reduce()map()

...

result

(k1,v)

(k1,v)
(k3,v)

...

combine()

(k1,v) (k1,v) ...

(k3,v) (k3,v) ...

...

input data

Map-Reduce API with combine()

(k1,v')

(k3,v')

...

(k1,v')

(k3,v')

(k1,v')

(k2,v')

shuffle
(k1,v'')
(k2,v'')
(k3,v'')

...

...

global reduction()

proc(e)

resultinput data

(k3,v')
(k1,v') rO

bj 1

(k2,v'')
(k1,v'')

com
bined rO

bj

...

(k1,v')

rO
bj 1

rO
bj K...

(k1,v')

...

...
MATE API

... (k3,v'')
...

...local reduction()

Fig. 1. Processing Structures

We show the processing structures for the MATE and the
Map-Reduce programming model with and without the Combine
function in Figure 1. The Map-Reduce programming model [4]
can be summarized as follows. The map function takes a set
of input points and generates a set of corresponding output
(key, value) pairs. The Map-Reduce library sorts and groups the
intermediate (key, value) pairs, then passes them to the reduce
function in such a way that the same keys are always placed on
the same reduce node. This stage is often referred to as shuffle.
The reduce function, which is also written by the user, accepts
a key and a set of values associated with that key. It merges
together these values to form a possibly smaller set of values.
Typically, just zero or one output value is produced per reduce
invocation.

The Map-Reduce framework also offers programmers an op-
tional Combine function, which can be used to improve the
performance of many of the applications. Before the (key, value)
pairs are emitted from the mapping phase, they are grouped
according to their key values and stored in a buffer on the

map nodes. When this buffer is flushed periodically, all grouped
pairs are immediately reduced using the Combine function. These
intermediate reduced pairs are then emitted to the reduce function.
The use of Combine can decrease the intermediate data size
significantly, and therefore reducing the amount of (key, value)
pairs that must be communicated from the map and reduce nodes.

We now explain the MATE-EC2 API, which also has 2-phases:
The local reduction phase aggregates the processing, combina-
tion, and reduction operations into a single step, shown simply
as proc(e) in our figure. Each data element e is processed
and reduced locally before next data element is processed. After
all data elements have been processed, a global reduction phase
commences. All reduction objects from various local reduction
nodes are merged with an all-to-all collective operation or a user
defined function to obtain the final result.

The advantage of this design is to avoid the overheads brought
on by intermediate memory requirements, sorting, grouping,
and shuffling, which can degrade performance in Map-Reduce
implementations [9]. At first glance, it may appear that our
API is very similar to Map-Reduce with the Combine function.
However, there are important differences. Using the Combine
function can only reduce communication, that is, the (key, value)
pairs are still generated on each map node and can result in
high memory requirements, causing application slowdowns. Our
generalized reduction API integrates map, combine, and reduce
together while processing each element. Because the updates to
the reduction object are performed directly after processing, we
avoid intermediate memory overheads.

The following are the components in MATE-EC2 that should
be prepared by the application developer:

• Reduction Object: This data structure is designed by
the application developer. However, memory allocation and
access operations to this object are managed by the middle-
ware for efficiency.

• Local Reduction: The local reduction function spec-
ifies how, after processing one data element, a reduction
object (initially declared by the programmer) is updated. The
result of this processing must be independent of the order in
which data elements are processed on each processor. The
order in which data elements are processed is determined
by the runtime system.

• Global Reduction: In this function, the final results
from multiple copies of a reduction object are combined
into a single reduction object. A user can choose from
one of the several common combination functions already
implemented in the MATE-EC2 system library (such as
aggregation, concatenation, etc.), or they can provide one
of their own.

Our MATE-EC2’s generalized reduction API is motivated by
our earlier work on a system called FREERIDE (FRamework for
Rapid Implementation of Datamining Engines) [10], [11], [9].

B. Design for Processing S3 Data

In this subsection we explain how data should be organized
and accessed by MATE-EC2 in order to maximize processing
throughput.

Data Organization
MATE-EC2 is developed in order to process large amounts of
data. However, there are generally space limitations while storing
data into a file system. Also, it can be more efficient to split data
into many files. Therefore, the first stage of organizing data in
MATE-EC2 is to split the application’s data set into a required
number of data objects.

By itself, this is a fairly trivial process, however, data orga-
nization must also involve the processing units’ requirements in
order to maximize the throughput. More specifically, the available
memory at the processing node and caching mechanisms in
the system should also be considered. Therefore, MATE-EC2
logically divides each data object into memory-friendly chunks,
typically only some tens of MBs. In S3, it is not necessary to
physically split data objects into smaller chunk units because it
allows for partial data accesses.

Therefore, the overall organization of data sets in MATE-EC2
is as follows. The application’s data set is first split into several
data objects. Though the physical limit on the size of each obect
is 5 TB, the number of data objects that the entire dataset is split
into is a multiple of the number of processes. Therefore, processes
can be evenly mapped among the data objects, which results in a
lesser number of connections to each object and increase network
utilization. We further store offsets for accessing each chunk in
a metadata file associated with each S3 object. This metadata
includes: (1) the full-path to the data object, (2) offset address
of the chunk, (3) size of the chunk, and (4) the number of data
points within the chunk, P . Each data point defines the smallest
unit of data that can be analyzed by the application process.

Consider the following example. Assume we have a set of
points in 3D space. If the data set size is 24 GB and the
number of processes is 16, then the data can be split into 16
data objects. Therefore, each process can work on one data object
and exploit the bandwidth. The size of chunks can vary according
to the available resources in the processing unit and the desired
workload per job. Assuming that a 128MB chunk size provides
the optimal resource utilization, then each data object can be
divided into 12 logical data chunks (24GB/(16×128MB). Since
the real processing deals with points in 3D space, the smallest size
of the data unit can be expressed with 3 double-float numbers,
and therefore, P = 128MB/(3× sizeof(double)). The metadata
of the chunk offsets is stored in an index file and used for the
purpose of chunk assignment to the processing nodes.

With the discussion of data organization, we now describe our
data processing scheme in detail.

Data Retrieval Subsystem
Using the metadata pertaining to data chunks, jobs can now
be assigned to the processing units. Although S3 provides high
availability, scalability, and low latency for stored data, the low-
level design details of the system are not made publicly available.
Therefore, we have empirically investigated S3’s performance. As
a result from our experiments, we observed the following features
that affect data access performance on S3: (1) Threaded Data
Retrieval and (2) Selective Job Assignment.

Threaded Data Retrieval uses a predefined number of threads
in order to efficiently retrieve data chunks from S3. The process
first allocates the required memory for the data chunk. Shown in

Figure 2, each thread in the compute unit reads different parts
of the data chunk from an S3 object via the offsets and writes
them into the pre-specified memory location. When all threads
have retrieved the desired data parts of the chunk, the memory
address and the metadata information are passed to the computing
layer in which data is processed.

Consider a situation where a process must retrieve a data chunk
that is 128 MB in size, using 16 retrieving threads. Each thread
receives a 128MB/16 = 8MB chunklet, i.e., a chunk within a
data chunk, and writes it into their corresponding portions of
the buffer. Because S3 allows for parallel reads per data object,
this approach maximizes bandwidth usage, and reduces overall
execution times of the processes, which we will show in the
ensuing section.

Selective Job Assignment exploits the available bandwidth of
the data objects in S3. As we stated above, the threaded retrieval
approach potentially opens many connections to a single data
object in order to efficiently retrieve the data chunks. Naturally,
the number of active connections made on each data object in
turn impacts the data retrieval speed. The jobs, therefore, are
distributed among the processes so that the number of active
connections is minimized on data objects. This is satisfied by
checking the connections on each of the data object and selecting
the job from the data object that has minimum number of active
connections.

Computing Layer

S3 Data Retrieval Layer

Buffer

Th0

Th1

Th2

Th3

Chunk0

EC2 Slave Instance EC2 Master Instance

MetadataJob Scheduler

S3 Data Object

input

Chunkn

...
S3

Data Store

Fig. 2. MATE-EC2 Processing System

Figure 2 demonstrates the interaction between MATE-EC2
components. This figure depicts an EC2 master instance, an EC2
slave instance, and a data object with n data chunks. In practice,
there is more than just one slave instance and many data objects.
However, the execution flow follows the same pattern for any
configuration.

The EC2 master instance distributes the unprocessed data
chunks among the requesting processes in EC2 slave instances.
Because the chunk information is in the metadata file, the master
instance can compile a job and assign it to the process which
is requesting it. When the process in a slave instance retrieves
the job’s metadata, it extracts the chunk information and begins
requesting the chunk from the S3 object. The parts of the chunk
are then written to the process’ buffer by the retrieving threads.
When the chunk is ready in the buffer, it is passed to the
computing layer, where processing is handled at a coarser scale.

As we mentioned, the metadata pertaining to a chunk includes
the number of data points, P , for that particular chunk. Therefore,
the computing layer can calculate the data unit size and iteratively
process the number of data units that can fit into the CPU’s

cache. Whereas the number of data points per chunk helps our
system to effectively utilize the cache, the chunk size helps take
advantage of memory usage. When all the data units in a chunk
have been consumed, the process requests another job from the
master instance. Once all the data chunks have been consumed,
the processes synchronously enter the global reduction phase and
combine all the reduction objects into the final result.

C. Load Balancing and Handling Heterogeneity

As discussed in previous sections, MATE-EC2 was also de-
signed to manage computation on a heterogeneous set of compute
instances. The motivation for this arises from how AWS makes
instances available as on-demand, reserved, and spot instances,
which are available due to the amount of money a user is
willing to bid. Let us suppose an organization has several large
instances reserved. During high workloads, it may choose to
obtain additional spot instances to improve the processing rate.
Depending on the organization’s budget, if these spot instances
happen to be small instances, the processing will have to be
performed on heterogeneous set of instances. Currently, Amazon
Elastic MapReduce is not capable of using a heterogeneous set
of instances. In contrast, MATE-EC2 provides dynamic load
balancing to allow the effective use of the aggregate processing
power.

Algorithm 1: Assigning jobs to the EC2 Instances
Input: chunkInfoList, metadata of the chunks
Result: job, which is assigned to EC2 compute instance

s3ObjList ← createS3ObjList(chunkInfoList);
/* EC2 instance request handler loop */
while true do

ec2CompIns ← ReceiveReq();
if CheckAssigned(ec2CompIns) then

SetProcessed(ec2CompIns, s3ObjList);

s3Obj ← AvailS3Obj(s3ObjList);
job ← CreateJob(s3Obj);
Transfer(job, ec2CompIns);
if IsNotEmpty(job) then

Assign(ec2CompIns,s3Obj);

Our approach for supporting dynamic load balancing is based
on a pooling mechanism. The metadata information that is
extracted from the data objects is used for this purpose. First,
the EC2 master instance retrieves and reads the metadata file
from S3 and creates the job pool. Next, the processes in slave
instances commence requesting jobs from the master instance.
The appropriate job is selected from the pool and assigned to
the requesting process. Therefore, the system throughput and
resource utilization are maximized.

Algorithm 1 shows how the master instance manages the
compute instances, which is also illustrated in Figure 2. Initially,
the master instance waits for the job requests from slave instances.
When a job request is received, the scheduler checks if any of the
chunks in the system was previously assigned to the requesting
compute instance. If so, the scheduler sets their state as processed.

Algorithm 2: Processing Chunks on EC2 Compute Instance
Input: scheduler, Job Scheduler

: rObj, User specified initial reduction object
Result: Updated final reduction object, rObj

/* Execute outer sequential loop */
while true do

/* Execute job request loop */
while true do

job ← RequestJob(scheduler);
if IsEmpty(job) then

break;

s3Obj ← GetS3Obj(job);
chunksInfo ← GetChunksInfo(job);
foreach chunk info cinfo in chunksInfo do
{* Retrieve data chunk chk with cinfo from
s3Obj *};
(i, val) ← Process(chk);
rObj(i) ← Reduce(rObj(i), val);

{* Perform Global Reduction *};

Then, it creates another job with a new set of chunk information
from the most suitable S3 objects in the system.

The main consideration for the scheduler in choosing an S3
object is effectively using the available bandwidth from each.
Therefore, if the number of connections between all pairs of
compute instances and S3 data objects is the same, the job
mapping will be done in a round robin fashion. Conversely, if the
number of connection on S3 objects varies, then more compute
instances’ requests will be mapped to the S3 objects with least
number of connections, as long as they still have chunks that
need to be processed. After creating the job from an S3 object,
it is transferred to the requesting compute instance.

When a compute instance receives a job from the scheduler, it
extracts the chunk’s metadata information and begins requesting
the data from the corresponding S3 data object. The data chunk is
retrieved and written to the chunk buffer using the aforementioned
threaded retrieval approach. The data retrieval layer then passes
the chunk to the computing layer and begins the local reduction
phase. After the data processing stage is finished, the compute
instance will request another job, until all chunks are consumed.
Finally, all compute instances reduce their execution with the
global all-to-all reduction. This process is shown in Algorithm
2.

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we extensively evaluate our data-intensive
computing middleware with various configurations using Amazon
EC2 instances and the S3 data store. The goals of our experiments
are as follows: (1) Comparing our middleware with a similar and
popular system, Amazon Elastic MapReduce, (2) investigating
Amazon’s environments and services with various settings to
detect the most suitable configurations for data intensive com-
puting, and (3) determining the performance of our middleware
on homogeneous and heterogeneous resources.

We used large EC2 instances (m1.large) for our experi-
ments. According to Amazon at the time of writing, these are
64-bit instances with 7.5 GB of memory. Large instances provide
two virtual cores, and each core further contains two elastic
compute units. Large instances are also rated as having high I/O
performance by AWS.

Throughout our experiments, we used varying numbers of large
instances as slaves for computing purposes and one separate
large instance as the master node for managing execution flow.
The original data file was divided into 16 data objects and
stored in S3. Each of these data objects is logically separated
into different number of chunks and metadata information were
extracted during this operation.

Three representative data-intensive applications were used to
evaluate our system: This includes two popular data mining al-
gorithms, KMeans Clustering and Principal Component Analysis
(PCA), and PageRank [16]. The data set size for both KMeans
and PCA is 8.2 GB (thus, each data object stored in S3 is 8.2/16
GB or nearly 500 MB). The data set used for PageRank is 1 GB,
contains 9.6 million nodes and 131 million edges.

During the experiments, we set the computation parameters
constant and observed the execution time with processing, syn-
chronization, and data retrieval times. The initialization times of
the instances are omitted. For each configuration, we repeated
the experiment at least five times and display the average of the
results.

A. Comparison of MATE-EC2 and Amazon Elastic Map-Reduce

In this set of our experiments, we evaluate the performance and
scalability of our middleware and compare it to Amazon Elastic
MapReduce. Of the three applications we used, we implemented
two different version of KMeans and PageRank applications
on Elastic Map-Reduce (EMR): with and without using the
Combiner function, which are referred to as EMR-combine and
EMR-no-combine, respectively. The nature of computation in
PCA does not allow us to use the combiner function, as we will
explain later.

In Figure 3(a) we show the execution times of MATE-EC2,
EMR-combine and EMR-no-combine with increasing num-
ber of elastic compute units for KMeans. If we consider the 8
compute units configuration as the baseline, the scalability ratios
for EMR-no-combine are 1.38 and 1.46 for 16 and 32 compute
units, respectively. In EMR-combine, these ratios are 1.73 for
16, and 2.97 for 32 compute units. Moreover, the speedups of
using Combiner function are 1.78, 2.23 and 3.61 for 8, 16 and 32
compute units. Thus, Combiner’s intermediate reduction, which
reduces data transfers between the map and reduce nodes, is
resulting in significant benefits.

In terms of scalability of MATE-EC2, if we consider the 8
compute units configuration as the baseline, the speedups of
the 16 and 32 compute units are 1.86 and 3.82, respectively.
That is, the relative parallel efficiency is 90% or higher. Con-
sidering the performance, MATE-EC2 runs 3.54, 3.81, and 4.58
times faster for 8, 16, and 32 compute units respectively than
EMR-combine.

We believe there are several likely reasons for the higher
performance with MATE-EC2. First is the difference between
the processing APIs: Although Combiner function reduces the

8 16 32

Elastic Compute Units

0

500

1000

1500

2000
Ex

ec
ut

io
n

Ti
m

e
(s

ec
) EMR-no-combine

EMR-combine
MATE-EC2

(a) KMeans – 128MB Chunk Size, 16 Data Retrieval Threads

8 16 32

Elastic Compute Units

0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) EMR-no-combine
EMR-combine
MATE-EC2

(b) PageRank – 128MB Chunk Size, 16 Data Retrieval Threads

8 16 32

Elastic Compute Units

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) EMR-no-combine
MATE-EC2

(c) PCA – 128MB Chunk Size, 16 Data Retrieval Threads

Fig. 3. MATE-EC2 vs. Elastic MapReduce

pairs before they are emitted from the local process, they are
still required to be sorted and grouped before they are passed to
the Combiner function from the map function 2. Furthermore, the
pairs need to be shuffled after they are emitted. In MATE-EC2’s
processing structure, on the other hand, the pairs are accumulated
into the reduction object according to their key values right after
their generation, which eliminates these overheads.

Typically, Map-Reduce’s task tracker maps the tasks where
the data resides, thus the locality is maximized. However, in
our experiments we examine the situations in which the data
is stored in S3 resources. Therefore, data needs to be retrieved
and then processed3. According to Amazon’s documents, a good

2http://wiki.apache.org/hadoop/HadoopMapReduce
3http://aws.amazon.com/elasticmapreduce/faqs/#cluster-1

practice is to initiate EC2 resources in the same region where
the data is located. Thus, the map and reduce tasks can exploit
the bandwidth, though they cannot be mapped to the nodes
in which the data resides. Considering MATE-EC2, our data
organization, job assignment and data retrieval strategies optimize
the interaction between processes and S3 data objects.

We repeated the same experiment for PageRank and present
the results in Figure 3(b). The speedups of MATE-EC2 are 1.58
for 16 and 2.53 for 32 compute units, whereas EMR-combine
configuration’s are 1.23 and 1.37. Furthermore, we observe that
the execution times for MATE-EC2 are 4.08, 5.25, and 7.54
times faster than EMR-combine for 8, 16 and, 32 compute
units, respectively. The data read and write operations are the
dominating factors for EMR-combine execution times.

In Figure 3(c), we repeated and displayed the execution times
of PCA application with EMR-no-combine and MATE-EC2.
The speedups of MATE-EC2 are 1.96 and 3.77 for 16 and 32
compute units. On the other hand EMR-no-combine achieved
speedups of 1.77 and 3.27. When we compare the execution
times of MATE-EC2 and Elastic MapReduce, our middleware
is 28 times faster than Map-Reduce execution for all three
configurations.

The performance differences are much higher for PCA, and
the reasons arise from its computing pattern. PCA involves two
iterations (job flows) during its execution. The first iteration cal-
culates the mean value of the matrix, which can be implemented
efficiently with Map-Reduce. In the second iteration, however, the
computation requires two rows from the matrix simultaneously
in order to calculate the covariances of a target row. While one
of the rows (target row) can be handled directly with an emitted
(key, value) pair, the other row must be traversed and identified
in the data objects. This operation is done for all row pairs, which
contributes to significant overhead. This computational nature is
the reason why the EMR-combine version is not implemented
for PCA.

In contrast, the offset information and the data unit size can
be used in order to efficiently traverse over the data chunks and
data objects with MATE-EC2. Therefore, the data organization
of MATE-EC2 effectively improves the performance for fetching
the matrix rows from S3 data objects.

Overall, we believe that this set of experiments offer strong
evidence that MATE-EC2 outperforms Elastic MapReduce in
terms of both scalability and performance.

In the next subsection, we show how we evaluated the MATE-
EC2’s performance with different parameters and determined
the best configuration. As the trends are similar with all three
applications, we report detailed results only from KMeans and
PCA.

B. Detailed Performance Studies on AWS

We focus first on the performance of MATE-EC2 with varying
chunk sizes and retrieving threads. We employed 4 large instances
(16 compute units) as slaves for processing and 1 large instance
as the master for job scheduling.

Figure 5 shows the performance of MATE-EC2 with only one
retrieving thread per processing thread, and with varying chunk
sizes. For instance, the configuration with 128KB size splits each
data object close to 4200 logical chunks within the S3 data object

8M 16M 32M 64M 128M

Chunk Size

100

120

140

160

180

200

220
Ex

ec
ut

io
n

Ti
m

e
(s

ec
) Data Retrieval

Synchronization
Processing

(a) KMeans - 16 Data Retrieval Threads for Each Processing Thread

8M 16M 32M 64M 128M

Chunk Size

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Data Retrieval
Synchronization
Processing

(b) PCA - 16 Data Retrieval Threads for Each Processing Thread

Fig. 4. Performance with Varying Chunk Sizes

128K
256K

512K 1M 2M 4M 8M 16M 32M 64M
128M

Chunk Size

100

300

500

700

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Data Retrieval
Synchronization
Processing

Fig. 5. KMeans – 1 Data Retrieval Thread for each Processing Thread

itself, whereas the 128MB size divides each data object into only
4 logical chunks.

This implies that the number of separate requests to S3 with a
128MB chunk size is significantly smaller than the configuration
with 128KB chunk size. Considering the worst case, i.e., 128 KB,
and the best performing cases, i.e., 16MB, 32MB, 64MB, and
128MB, the speedups of using larger data chunks range from 2.07
to 2.49. The execution times can further be analyzed according
to their data retrieval, synchronization and processing times.
Considering the 128KB chunk size as the base configuration,
the speedups of data retrieval times with increasing chunk sizes
range from 1.55 to 3.71 where 64MB chunk size configuration
exhibits the best performance. The synchronization time does not

1 2 4 8 16 32

S3 Data Retrieval Threads

100

150

200

250

300

350

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Data Retrieval
Synchronization
Processing

(a) KMeans – 128MB Chunk Size

1 2 4 8 16 32

S3 Data Retrieval Threads

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Data Retrieval
Synchronization
Processing

(b) PCA – 128MB Chunk Size

Fig. 6. Execution Times with Varying Number of Data Retrieval Threads

introduce significant overhead to the system, however it increases
while the chunk sizes increase. The slowdowns of processing
times change from 17% to 59% with increasing chunk sizes, and
the highest slowdown ratio was with 64MB configuration. Since,
most of the execution time is spent during the data retireval phase,
the speedups of using larger chunk sizes dominate the slowdowns
of processing times. Thus, chunk sizes have a very substantial
impact on the performance while retrieving and processing data
from S3. The minimum data processing time is with the 128 MB
configuration, although the average time of the experiments with
this configuration shows higher overall execution time than the
16MB, 64MB and 32MB configurations.

The number of retrieving threads used for each processing
thread (or core) turns out to be a very important factor for
overall performance. Thus, before detailed analysis of the trends
observed in Figure 5, we also consider results for the case
where threaded retrieval is used. Thus, as shown in Figure 4, the
execution times of varying chunk sizes with 16 retrieval threads
were observed.

Let us first consider the KMean application in Figure4(a). If
the 8MB configuration is considered as the base setting, the
speedups of 16MB, 32MB, 64MB and 128MB are 1.13, 1.20,
1.30, and 1.27, respectively. Similar to the previous experiment,
the minimum execution times are observed with the 128MB
setting, even though the average execution time is slightly higher
than the 64MB. If we only consider the data retrieval times, the
speedups range from 1.38 to 3.25, where the best performance
is observed with 128MB chunk size configuration. Although

increasing chunk sizes introduce slowdowns, which are between
6% and 27%, in data processing times, this is again amortized
with reductions in data retrieval times.

If we juxtapose Figures 5 and 4(a), we can clearly observe
the effect of using multithreaded data retrieval, as the speedup
of the 8MB setting with 16 retrieving threads over 1 retrieving
thread is 1.24. Similarly, we can apply the same comparison to the
other configurations: the speedups of using 16 retrieving threads
are 1.40 for 16MB, 1.56 for 32MB, 1.65 for 64MB and 1.81
for 128MB. Clearly, using multithreaded data retrieval approach
improves the performance of the execution of KMeans.

Figure 4(b) presents the same configuration with PCA ap-
plication. The execution times follow the same pattern with
KMeans. For this configuration, if we consider the 8MB setting
as the base line, the speedups are 1.12, 1.30, 1.46, and 1.43 for
16MB, 32MB, 64MB, and 128MB chunk size configurations,
respectively. The comparison of 1 threaded versus 16 threaded
configurations follows a similar pattern that we had in KMeans
application for PCA4. If we focus on the data retrieval times, the
speedups change from 1.23 to 2.91, and the 128MB chunk size
configuration provides the best performance.

In analyzing all experiments where chunk size is varied, we
can see that, as data chunks increase in size, the processing
times likewise increase in all cases. We believe this is because
of the cache behavior on virtual cores and non-dedicated ma-
chines. With smaller chunk sizes, data can be cached effectively
between retrieval and processing. At the same time, as chunk size
increases, data retrieval times decrease, and this is likely due to
the high latency of data accesses on S3. Thus, when the total
number of distinct chunks to be read is smaller, we have lower
data retrieval times.

Another interesting observation pertains to synchronization
times, i.e., the time taken to synchronize threads for transitioning
from the data processing phase to the combination/reduction
phase. These tend to increase while the chunk sizes become
larger. We believe this is due to job granularity. That is, when all
data chunks in the system have been consumed, the processing
threads must aggregate all reduction objects and calculate the
final result. At this point, all processes are required to interact
and wait for each other. If the job size is large, all the threads must
wait on the thread that was scheduled the final job. Therefore,
synchronization time is impacted by the chunk size, as well as the
throughput of the final process. In combining the three factors, the
best performance is achieved with 64MB and 128MB chunk sizes.
In general, however, this can be application dependent. In the
future, we will add a performance model and/or an auto-tuning
framework in our system to automatically select the optimal
chunk size.

Continuing our study of different performance parameters, we
next varied the number of data retrieval threads. The results are
shown in Figures 6(a) and 6(b). We used 128MB chunk size
as our default configuration. For both of applications, as the
number of retrieving threads increase, the data transfer speed
expectedly also increases, causing overall execution times to
decrease. However, after 16 retrieving threads we begin expe-
riencing diminishing returns due to scheduling overheads when

4Results for the single thread version of PCA not shown due to space constraints

there are too many threads. Our results show that the speedups
of using many retrieving threads against 1 retrieving thread range
from 1.38 to 1.71 for PCA, and from 1.37 to 1.90 for KMeans.
Moreover, the speedups in data retrieval times are between 1.74
and 5.36 for KMeans, and 1.71 to 3.15 for PCA. For both
applications, the best performance was observed with 16 retrieval
threads.

8M 16M 32M 64M 128M

Chunk Size

180

190

200

210

220

230

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Sequential
Selective

(a) KMeans – 16 Data Retrieval Threads

8M 16M 32M 64M 128M

Chunk Size

160
180
200
220
240
260
280
300

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Sequential
Selective

(b) PCA – 16 Data Retrieval Threads

Fig. 7. Chunk Assignment Strategies, Varying Chunk Sizes

The next set of experiments addresses the effects of data
assignment. Our threaded data retrieval approach opens many
connections to the targeted S3 object. If several processes are
assigned to the same data object, then the number of connections
becomes a bottleneck. Without a selective job assignment scheme,
the scheduler assigns jobs sequentially. Because logical chunks
are consecutively placed among the data objects, consecutive
job requests from various processes are mapped to the same
data object. This results in a flood of connections on the same
object, which slows down data retrieval. Conversely, a selective
job assignment strategy, where the scheduler can choose to assign
jobs to minimally accessed data objects, may offer performance
gains.

In Figure 7(a) and 7(b) we show the execution times of
KMeans and PCA with selective and sequential job
assignment strategies. The speedups of using selective as-
signment for KMeans are 1.01 for 8MB and range from 1.10 to
1.14 for the other chunk size configurations. The reason why
our approach does not show a significant speedup for 8MB
configuration is due to the small chunk size that results in short
data chunk retrieval times. This implies that there is little oppor-

0L/8S 2L/6S 4L/4S 6L/2S 8L/0S

EC2 Configuration (L = Large, S = Small)

100

140

180

220

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) MATE-EC2
Predicted Optimal

(a) KMeans – 128MB Chunk Size, 16 Data Retrieval Threads

0L/8S 2L/6S 4L/4S 6L/2S 8L/0S

EC2 Configuration (L = Large, S = Small)

160

200

240

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) MATE-EC2
Predicted Optimal

(b) PCA – 128MB Chunk Size, 16 Data Retrieval Threads

Fig. 8. MATE-EC2 in Heterogeneous Environments

tunity where a single object would be simultaneously accessed by
multiple threads. The speedups of using selective assignment
for PCA are 1.32, 1.51, 1.47, 1.68, and 1.19 for 8 MB, 16
MB, 32 MB, 64 MB, and 128 MB settings, respectively. The
difference between the execution times are more clear in PCA
because the application consists of two iterations, which can lead
to the requirement of retrieving every data element twice. These
results also indicate that splitting data into several data objects
and concurrently processing them can lead to better performance
than working on one large data object.

C. Performance of MATE-EC2 on Heterogeneous Environments

In the previous subsection, we empirically determined that
the optimal configuration for MATE-EC2 involves 16 retrieving
threads, a 64MB or 128MB data chunk size, and use of the
selective job assignment strategy.

In this set of experiments, we evaluate our middleware on
heterogeneous environments using this optimal configuration.
In order to provide a heterogeneous environment, we ran our
middleware on varying number of Amazon EC2 small and large
instances. Small instances provide 1.7 GB memory and one
virtual core with one elastic compute unit on a 32-bit architecture.
Moreover, the I/O performance of small instances has been rated
as being moderate. This is in contrast to large instances (7.5 GB
memory, 2 virtual cores where each virtual core has 2 elastic
compute units, and high I/O ratings). Therefore, we emphasize
that heterogeneity does not only exist in terms of processing rate,
but also I/O performance.

In our experiments, we used a total of 8 instances, but varied
the mix of small and large instances. The L and S labels in
Figures 8(a) and 8(b) refer to the large and small instance types
respectively. For example, 6L/2S denotes that 6 large instances
and 2 small instances were used.

Results in Figures 8(a) and 8(b) show a comparison between
the actual execution times and Predicted Optimal times. The
Predicted Optimal times reflect the perfect use of the aggregate
processing power of a heterogeneous configuration. To calculate
these, we first derive the ratio between the performance of the
given application on the two homogeneous configurations (0L/8S
and 8L/0S). This ratio indicates the throughput capacity of a
large instance over a small instance, considering both the I/O
and computation performance of the instances. Using this ratio,
we can further compute the predicted execution times of each
heterogeneous configurations.

We can now analyze the overheads of our middleware on
heterogeneous environments. In Figure 8(a), we display the
execution times of KMeans, whose overheads above the predicted
optimal values are near 1% on all configurations. Similarly,
Figure 8(b) shows the execution times of the same environment
with PCA application. The overheads for PCA are 1.1% for
6S/2L, 7.4% for 4S/4L and 11.7% for 2S/6L configurations.

Even though we show that the execution times on heteroge-
neous environments are close to the Predicted Optimal times,
two observations can be made: (1) The overheads increase while
the number of large instances grow in the system and (2) PCA’s
overheads are higher than those of KMeans. We believe the reason
for observation (1) is due to the synchronization issues that rise
because of the difference between large and small instance types’
I/O and throughput performance. Our approach for calculating the
overheads assumes perfect timing for synchronization among the
instances due to the ratio calculation which is being derived from
homogeneous environments. The reason for observation (2) is
because PCA involves two iterations, and therefore, the processes
must synchronize twice. Because the granularity of jobs ulti-
mately determines the synchronization intervals during execution,
chunk sizes have a direct effect on such heterogeneity-related
overheads. Therefore, the overheads due to the heterogeneity
can further be controlled with smaller chunk sizes, i.e., jobs.
Conversely, however, this may also cause additional overhead due
to the inefficient bandwidth usage that we showed in the previous
subsection.

V. RELATED WORK

An increasing number of data-intensive projects have been
migrated onto the Cloud since its emergence, and in particular,
the celebrated class of Map-Reduce [3] applications. Driven by
its popularity, Cloud providers including Google App Engine
[7], Amazon Web Services, among others, began offering Map-
Reduce as a service.

Several efforts have addressed issues in deploying Map-Reduce
over the Cloud. For instance, the authors propose a preliminary
heuristic for cost-effectively selecting a set of Cloud resources
[12]. Related to performance, Zaharia, et al. analyzed specu-
lative execution in Hadoop Map-Reduce and revealed that its
assumption on machine homogeneity reduces performance [22].
They proposed the Longest Approximate Time to End scheduling

heuristic for Hadoop, which improved performance in hetero-
geneous environments. While our findings indeed echoed the
authors’ observation that heterogeneous nodes can be executed
more effectively, our work nonetheless differs where processing
patterns on data in S3 can lead to optimizations. In another
related effort, Lin et al. have developed MOON (MapReduce
On Opportunistic eNvironments) [14], which further considers
scenarios where cycles available on each node can continuously
vary. The dynamic load balancing aspect of our middleware has
a similar goal, but our work is specific to AWS.

Many efforts have conducted cost and performance studies
of using Cloud environments for scientific or data-intensive
applications. For instance, Deelman et al. reported the cost of
utilizing Cloud resources to support a representative workflow
application, Montage [5]. They reported that CPU allocation costs
will typically account for most of the cost while storage costs are
amortized. Because of this, they found that it would be extremely
cost effective to cache intermediate results in Cloud storage.
Palankar et al. conducted an in-depth study on using S3 for sup-
porting large-scale computing [17]. In another work, Kondo et al.
compared cost-effectiveness of AWS against volunteer grids [13].
Yuan et al. proposed a strategy [21] for caching for large-scale
scientific workflows on clouds. A tangential study by Adams et
al. discussed the potentials of trading storage for computation [1].
Weissman and Ramakrishnan discussed deploying Cloud proxies
[20] for accelerating web services. The goal of our work, in
contrast, has been to study retrieval and processing of data stored
in S3 and developing a middleware for data-intensive computing.

VI. CONCLUSIONS AND FUTURE WORK

Recently, users are becoming increasingly attracted by the
benefits in using Cloud computing resources for data-intensive
projects. The Cloud’s on-demand resource provisioning and in-
finite storage are highly suitable for various large-scale appli-
cations. This paper addressed two main issues in supporting
data-intensive applications on Amazon Web Services, which have
emerged as the most popular provider among the available Cloud
services. The first issue is understanding the performance aspects
of retrieving and processing data from Amazon S3. The second is
developing an efficient and scalable middleware with a high-level
API for data-intensive computing.

Our experiments with S3 have shown that high efficiency
is achieved by having about 16 data retrieval threads for each
processing thread, using a chunk size 64MB or 128 MB, and
by minimizing the number of connections on each data object
in S3. Using these observations, we have developed MATE-EC2,
a middleware for facilitating the development of data processing
services on AWS. We have shown that this middleware outper-
forms Amazon Elastic MapReduce by a factor of 3 to 28. Also,
we are able to support data processing using a heterogeneous
collection of instances in AWS, thus offering more flexibility and
cost-effectiveness to users.

In the future, we would like to expand our work in several
directions. First, we will experiment with additional applications.
Second, a performance model and/or an autotuning framework
is needed to automatically select chunk sizes and number of
retrieving threads. Finally, we will like to extend MATE-EC2 to
enable cloud bursting, i.e., use Cloud resources as a complement

or alternative to local resources. Specifically, we wish to process
data stored on a combination of local resources and S3, while
using processing power from both EC2 and local resources.

REFERENCES

[1] I. F. Adams, D. D. Long, E. L. Miller, S. Pasupathy, and M. W. Storer.
Maximizing efficiency by trading storage for computation. In Proc. of the
Workshop on Hot Topics in Cloud Computing (HotCloud), 2009.

[2] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore. In Proceedings
of the Twentieth Annual Conference on Neural Information Processing
Systems (NIPS), pages 281–288. MIT Press, 2006.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, pages 137–150, 2004.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proceedings of OSDI, pages 137–150, 2004.

[5] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The
cost of doing science on the cloud: the montage example. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages
1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[6] D. Gillick, A. Faria, and J. Denero. Mapreduce: Distributed computing for
machine learning. 2008.

[7] Google app engine, http://code.google.com/appengine.
[8] Hadoop, http://hadoop.apache.org/.
[9] W. Jiang, V. Ravi, and G. Agrawal. A Map-Reduce System with an Alternate

API for Multi-Core Environments. In Proceedings of Conference on Cluster
Computing and Grid (CCGRID), 2010.

[10] R. Jin and G. Agrawal. A middleware for developing parallel data mining
implementations. In Proceedings of the first SIAM conference on Data
Mining, Apr. 2001.

[11] R. Jin and G. Agrawal. Shared Memory Parallelization of Data Mining
Algorithms: Techniques, Programming Interface, and Performance. In
Proceedings of the second SIAM conference on Data Mining, Apr. 2002.

[12] K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing hadoop
provisioning in the cloud. In HotCloud’09: Proceedings of the 2009
conference on Hot topics in cloud computing, Berkeley, CA, USA, 2009.
USENIX Association.

[13] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson. Cost-
benefit analysis of cloud computing versus desktop grids. In IPDPS
’09: Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, pages 1–12, Washington, DC, USA, 2009. IEEE
Computer Society.

[14] H. Lin, X. Ma, J. S. Archuleta, W. chun Feng, M. K. Gardner, and
Z. Zhang. Moon: Mapreduce on opportunistic environments. In S. Hariri
and K. Keahey, editors, HPDC, pages 95–106. ACM, 2010.

[15] J. Li, et al. escience in the cloud: A modis satellite data reprojection and
reduction pipeline in the windows azure platform. In IPDPS ’10: Proceed-
ings of the 2010 IEEE International Symposium on Parallel&Distributed
Processing, Washington, DC, USA, 2010. IEEE Computer Society.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[17] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon s3
for science grids: a viable solution? In DADC ’08: Proceedings of the 2008
international workshop on Data-aware distributed computing, pages 55–64,
New York, NY, USA, 2008. ACM.

[18] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C. Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In Pro-
ceedings of 13th International Conference on High-Performance Computer
Architecture (HPCA), pages 13–24. IEEE Computer Society, 2007.

[19] C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing:
A view of scientific applications. Parallel Architectures, Algorithms, and
Networks, International Symposium on, 0:4–16, 2009.

[20] J. Weissman and S. Ramakrishnan. Using proxies to accelerate cloud
applications. In Proc. of the Workshop on Hot Topics in Cloud Computing
(HotCloud), 2009.

[21] D. Yuan, Y. Yang, X. Liu, and J. Chen. A cost-effective strategy for
intermediate data storage in scientific cloud workflow systems. In IPDPS
’10: Proceedings of the 2010 IEEE International Symposium on Paral-
lel&Distributed Processing, Washington, DC, USA, 2010. IEEE Computer
Society.

[22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
OSDI, pages 29–42, 2008.

