Integrating Online Compression to Accelerate
Large-Scale Data Analytics Applications

Tekin Bicer*, Jian YinT, David Chiui, Gagan Agrawal® and Karen Schuchardt®
*Computer Science and Engineering
Ohio State University
E-mail: {bicer, agrawal} @cse.ohio-state.edu
tPacific Northwest National Laboratories
E-mail: {jian.yin, karen.schuchardt} @pnnl.gov
iWashington State University
E-mail: david.chiu@wsu.edu

Abstract—Compute cycles in high performance systems are
increasing at a much faster pace than both storage and wide-
area bandwidths. To continue improving the performance of
large-scale data analytics applications, compression has therefore
become promising approach. In this context, this paper makes
the following contributions. First, we develop a new compression
methodology, which exploits the similarities between spatial
and/or temporal neighbors in a popular climate simulation
dataset and enables high compression ratios and low decom-
pression costs. Second, we develop a framework that can be
used to incorporate a variety of compression and decompression
algorithms. This framework also supports a simple API to
allow integration with an existing application or data processing
middleware. Once a compression algorithm is implemented, this
framework automatically mechanizes multi-threaded retrieval,
multi-threaded data decompression, and the use of informed
prefetching and caching. By integrating this framework with
a data-intensive middleware, we have applied our compression
methodology and framework to three applications over two
datasets, including the Global Cloud-Resolving Model (GCRM)
climate dataset. We obtained an average compression ratio of
51.68%, and up to 53.27% improvement in execution time of
data analysis applications by amortizing I/O time by moving
compressed data.

I. INTRODUCTION

Science has become increasingly data-driven. Data collected
from instruments and simulations is extremely valuable for a
variety of scientific endeavors. Both wide-area data dissemi-
nation and analysis have become important areas of research
over the last few years. These efforts, however, are complicated
by the sustained and rapid growth of scientific data sizes.
Indeed, increased computational power afforded by today’s
high-performance machines allows for simulations with ever
higher resolutions over both temporal and spatial scales. As a
specific example, the Global Cloud-Resolving Model (GCRM)
currently produces 1 petabyte of data for a 4 km grid-cell size
over a 10 day simulation. Future plans include simulations
with a grid-cell size of 1 km, which will increase the data
generation by factor of 64. Even in the short term (i.e.,
by 2015) it will be possible to perform 2 km resolution
simulations, where a single time step of one three-dimensional
variable will require 256 GB of storage.

At the same time, scientific experiments and instruments are
also collecting data with increasing granularity. The Advanced
LIGO (Laser Interferometer Gravitational-wave Observatories)
Project, funded with a $200 million investment from National
Science Foundation, is increasing its sensitivity by a factor
of ten, resulting in three orders of magnitude increase in the
number of candidates for gravitational wave signals'.

Unfortunately, wide-area network bandwidth and disk
speeds are growing at a much slower rate. This stifles the
application scientists’ need to download, manage, and process
massive datasets. To reduce data storage, retrieval costs, and
transfer overheads, compression techniques have proven to be
a popular approach among users [17], [2], [9], [23], [6], [35],
[30], [22]. Compression has also been recently applied for
reading large scientific files in parallel file systems [39]. How-
ever, effectively supporting compression for scientific simu-
lation data and integrating compression with data-intensive
applications remains a challenge. Specifically, we feel that
much additional work is needed along the following directions:

« How can the properties of large-scale scientific datasets,
especially the simulation datasets, be exploited to develop
more effective compression algorithms?

o How can we develop software that allows easy plug-and-
play of compression and decompression algorithms, while
allowing the benefits of prefetching, multi-threading, and
caching?

o« How can software be integrated with a data analysis
middleware, to help achieve performance benefits for
local and remote data analysis?

To address the above challenges, this paper makes the
following contributions. First, we develop a new compression
methodology, which exploits the fact that spatial and/or tem-
poral neighbors in simulation data have very similar values.
Thus, one can simply store certain base values and the deltas
pertaining to these base values, which can be represented
more efficiently. In lieu of storing all floating point values, we
achieve high compression ratios. Additionally, our compres-
sion and decompression scheme exploits hardware supported
bitwise operations to keep the costs of coding/decoding very

Thttp://media.caltech.edu/press_releases/13123

low.

Second, we developed a framework that can be used to
easily incorporate a variety of compression and decompres-
sion algorithms. This framework supports a simple API to
integrate compression with an existing application or data
processing middleware. Once a compression algorithm is im-
plemented, this framework can allow multi-threaded retrieval,
multi-threaded data decompression, and the use of informed
prefetching and caching.

Third, we have integrated this framework with a data anal-
ysis middleware produced in our earlier work [24], [13]. This
framework supports a map-reduce style data processing on
large datasets stored locally and/or remotely (which are then
retrieved and processed using local resources). This integration
allows us to examine the advantages of the compression
algorithms and our framework in terms of both data retrieval
and wide-area data transfers.

Finally, we evaluated our work using two large datasets
(including a GCRM simulation dataset) and three data pro-
cessing applications. We find that our compression algorithm
results in an average compression ratio of 51.68%. Moreover,
it outperforms the popular LZO scheme by 38.07% in space
and up to 39.76% in performance. For processing on data
stored locally, remotely, and both, the performance benefits
we obtain range between 40-45% over uncompressed dataset.
Our informed prefetching implementation, coupled with multi-
threaded decompression, results in up to 27% additional per-
formance improvement.

II. COMPRESSION ALGORITHM FOR SIMULATION DATA

In this section, we introduce a compression method which
can achieve high compression ratio with low decompression
overheads. The underlying ideas in this method are applicable
to any simulation dataset, although we exemplify the approach
using climate simulation data.

To achieve high compression ratios, an algorithm must
search for code redundancy and perform complex data trans-
formation for compact data representation. Hence, high CPU
and/or memory overheads for both compression and decom-
pression are typical. To achieve better compression overhead
and space trade-off, we propose a compression methodology
that specifically exploits the domain-specific characteristics of
simulation datasets. While many popular compression schemes
exploit repeated byte sequences, such long sequences (or runs)
are infrequent in scientific data, which usually contain highly
entropic information represented as floating point values. Our
approach is a variation of delta compression with a focus on
floating point numbers.

Data sets in the scientific domain often observe spatial
and/or temporal properties, which forms a natural dependence
in neighboring data points. For example, if we consider a
climate dataset, the temperature of a specific location depends
heavily on the temperature of the same location in previous
time frames, as well as the temperature of neighboring loca-
tions. This dependence is typically in the form of a marginal
difference in their numerical values. If we consider two cells
X and Y that are spatial or temporal neighbors, then we can
store X and the difference § = Y — X, instead of storing both

values. Because these § values are typically distributed in a
much smaller range, they can be represented and stored more
efficiently.

fmmmmmmmmmmmm e ®X[i,j—1]--
| . |
e ®X[i,0}----- |
Fo---- bo---- bo---- copy----1 i !
: : : v v v
299.55 | 299.55 100...101111 00......ccccuu... 0
X 299.75 | 299.79 X/ 100...101010 | 00...0 101010
300.01 | 300.05 100...101011 | 00...0 1101

copy encode zero-fill run length

'

100...101111

11111

~_ [100...101010 | 17010101010

100...101011 | 171100 1101

Fig. 1. Climate Compression Example

In Figure 1, we present an example that illustrates this
lossless compression scheme over a small dataset. Table X
consists of the original climate temperature data. Each cell
X|i, 7] denotes a temperature reading at latitude ¢ and lon-
gitude j, respectively. Next, table X’ shows (in binary) the
intermediate values, generated as follows,

o [X[l
Ha {X[z',ﬂ ® X[i.j 1),

j=0

j>0

From the binary representation, we can observe that the @
(xor) operation produces z leading zeros due to the numer-
ical proximity of each cell’s neighborhood. This intermedi-
ate sequence of bits can now be compressed using a run-
length to represent z zeroes, followed by a literal bit-string
representing J. For instance, a 32-bit intermediate sequence
0x000000EF can be compressed down to 13 bits which is
11000 1110 1111. Here, we only use the first 5 bits to
represent a run of 24 leading zeroes, which is then followed
by the 8 bits needed to represent the § literal, 0xEF. After this
coding is complete, we arrive at the final compressed table X.
It is important to note that the intermediate Table X’ is only
shown for illustration. Our algorithm directly transforms X to
X (i.e., there is no additional storage requirement for Table
X").

In this example, we considered single precision floating
point numbers which are 4 bytes in size. Therefore, the initial
5 bits of the codeword are used for specifying the number of
leading zeros, LZ, after applying & operation to adjacent cells.
The remaining 32 — LZ bits represent the differing bits. This
results in a codeword which is instantaneously decodable. Also
notice that it is trivial to extend this compression approach to
double precision floating point numbers by using 6 bits for the
leading zeros, and 64 — LZ bits for the differing bits between
neighbor cells.

This compression approach also allows us to generate lossy
codes. For instance, the least significant literal bits represent-
ing § could be ignored. This can be translated into shorter end-

TABLE I
COMPRESSION SYSTEM API: DATA TYPES AND FUNCTIONS

Data Type Declarations

typedef struct {
void* user_args;
size_t user_args_size;
chunk_args_tx* ch_arg;} comp_args_t;

typedef struct {
file_info_t i_file;
threads_info_t i_threads;
cache_info_t cache_info;} comp_scheduler_args_t;

User-Defined Functions for Compression System

size_t (xencode_t) (void* input, size_t in_size,

size_t (xdecode_t) (void* input, size_t in_size,

int (xprefetch_t) (comp_metax ch_hist, int n_hist,

void* output,
Required: Encode strategy function is applied to input data chunk, and encoded/compressed data is written to output

void* output,
Required: Decode strategy function is applied to input compressed data chunk, and decoded/decompressed data is written to output

comp_meta*x ch_prefetch,
Optional: Prospective data chunks are determined using this function. chunk_hist holds the previously accessed data elements.

size_t out_size, comp_args_t* comp_args);

size_t out_size,

comp_args_tx comp_args) ;

comp_args_t* comp_args);

Provided Functions to Application Layer for I/0 Operations

size_t comp_read (voidx buffer,
int comp_seek (off_t s_offset);
void comp_write (voidx buffer, int count,

int count,

off_t size,

off_t size);
int comp_initialize (comp_scheduler_args_t comp_scheduler_args);

int+ eof_check);

to-end application I/O time. In Section IV, we will evaluate
over both lossy and lossless codes. Our experiments show that
the lossy compression can further improve the performance of
data-intensive applications with small error bounds.

III. A COMPRESSION SYSTEM DESIGN FOR 1/0
INTENSIVE APPLICATION

Besides a climate data specific compression algorithm, an-
other component of our work is a system that can make use of
compression transparent to an application or a data processing
middleware. This system can incorporate any compression and
decompression subsystem in a plug-and-play fashion. In this
section, we describe the basic components of the compression
system, and then show how it can be integrated with a data-
intensive middleware [24], [13].

A. System Components

Our compression system, shown in Figure 2, comprises
three basic components: Chunk Resource Allocation layer
(CRA), Parallel Compression Engine (PCE), and the Parallel
I/0O Layer (PIOL).

Before the application is executed, the dataset must be
compressed and stored. First, dataset is partitioned into chunks,
and each of these chunks is then compressed independently.
The developer can decide the size of the data chunks, which
eventually determines the level of parallelism in our com-
pression system. The finer granularity in chunk sizes results
in more opportunity for concurrent operations during the
execution. However, if the chunk sizes are too small, then
the number of I/O requests increases, resulting in overhead.

During the compression of the original dataset, a metadata
file is generated per data file. This metadata consists of
the <header, body> segments. The header information
includes the location of the compressed file, number of chunks,
system buffer size, and user defined data structure into which

Application Layer

v)

Chunk Request Preparation
Resource Allocation

Parallel Compression Engine

Parallel
In-Memory Cache ‘ Prefetcher ‘ (En/De)coder

v)

Parallel 1/0 Layer

Fig. 2. Compression System Components

the decompressed data is read. The location of the dataset and
the storage type enable or disable the parallel I/O functionality
of the compression system. The metadata’s body segment
consists of specific information per each compressed data
chunk. This includes a chunk’s corresponding location in
the original dataset and its size. When the application starts,
the metadata file(s) are read and the required resources are
allocated in the compression system.

In the following, we discuss each component layer in
greater detail. We will refer to Figure 3 as we describe the
flow of execution in our narrative.

Chunk Resource Allocation (CRA) Layer:
The CRA is the first component that interacts with the
application layer, by initializing the compression system and

Application 1/0 Request

Enqueue Compressed Chunk for Decompression

(comp_read(*buffer, size, count, offset)) |

v

PCE Queue

Generate Chunk Request

A

PCE Thread Pool

|
@®@

Enqueue I/O Request

encode()

(decode()

PIOL Queue

/
(

y y

A

@®

*bay yunyy ananbu3z

prefetch()
Copy Decompressed Chunk

get_cache(“%nsert_cache(..|

1/0 Thread Pool

Fill User Buffer <

Chunk Resource Allocation

Parallel Compression Engine

In-Memory Cache

Parallel I/O Layer

Fig. 3.

allocating the necessary resources. A significant aspect of
CRA’s design is the use of two thread pools in order to provide
concurrency for both I/O and computational operations. The
threads in these pools are initialized by the CRA after the
application layer initializes the compression system. It also
allocates the necessary resources for the in-memory cache that
we will discuss later.

The CRA exposes a set of functions that can be invoked
by the application layer. We present some of these Provided
Functions in Table I. They are designed to have simple
interfaces, similar to any I/O library, so that the compression
system can be employed by any application or middleware
with a minimal modification to the application layer. Partic-
ularly, the application layer can use this API to initiate I/O
requests as if it is interacting with the original dataset.

However, the CRA layer transparently converts these to
the actual file I/O requests. This involves converting the
requested offset addresses into the compressed chunks’ offset
addresses by using the metadata. Once this conversion is
performed, all the chunks corresponding to the user request
can concurrently be retrieved and decompressed. Particularly,
to use parallelism for data retrieval and compression, the
CRA layer determines the corresponding compressed data
chunks using the metadata file, and creates the compressed
chunk requests. Second, these requests are enqueued into a
job queue, and finally, the CRA layer waits until the user
buffer is filled with the original data by the parallel retrieval
and decompression threads. Once the user buffer is filled, the
CRA returns the call of the application layer.

Parallel Compression Engine (PCE):

The PCE layer is responsible for the main computation of
compression system. After the CRA initiates the PCE layer’s
thread pool, threads begin polling the thread pool’s job queue
(known as the PCE queue). Once a job is enqueued into the
PCE queue, one of the available threads can begin processing
1t.

At this time, there can be two basic requests which a
thread can handle: (1) compressed chunk request, and (2)
chunk decompress request. When a PCE thread receives a
compressed chunk request, it first checks the in-memory cache.

Execution Flow of Compression System

If the chunk is readily available, then the content of the data is
copied into the user-provided buffer. The copy operation can
be performed concurrently, i.e., threads can copy many data
chunks to the user buffer at the same time. Since each chunk in
the compressed dataset corresponds to different portions of the
original data, the copy operations of the threads that work on
different chunks are disjoint. If the chunk is not in the cache,
then the PCE thread receives a miss, and consequently, I/O
requests are created for the missed chunks, and are enqueued
to the PIOL queue.

Whenever the parallel I/O (PIOL) layer (described later)
retrieves the compressed data chunk, it creates a chunk de-
compress request and enqueues it into the PCE queue for
decompression. Our compression system provides an interface
for implementing two main functions for the compress and de-
compress operations, namely, the decode_t and encode_t
functions shown in Table 1. If a chunk decompress request
is read by the PCE thread, it begins applying the user de-
fined decode_t to the compressed chunk. Any compression
algorithm can be injected into these encode and decode
strategy functions. After decode_t function is applied to
the compressed chunk, a PCE thread copies the decoded data
into the user buffer, and sends a signal with the copied data
size information to the CRA. The CRA in turn accumulates
the size information. Whenever the total size is identical with
the user’s request, the application layer’s request is returned.
Meanwhile, the PCE thread inserts the decompressed chunk
into the cache and waits for new requests.

Our system exploits a common feature of compression
algorithms, which is that a compression algorithm can
either be applied to an entire dataset or only a portion.
The PCA layer leverages these properties to efficiently and
automatically parallelize the compression and decompression
of the chunks using customized the compression algorithms.
In the compression system, in-memory cache is used for
storing the previously accessed data chunks. However,
another functionality of it is to increase the efficiency through
prefetching, which is described later.

Parallel I/O Layer (PIOL):
If the requested chunk is not already in the cache, it

must be retrieved from the compressed dataset. The PIOL
layer interacts with the compressed dataset, performing just
two basic operations: parallel and sequential I/O. The PIOL
component performs parallel I/O whenever possible. Once a
compressed chunk request is submitted to the PIOL queue,
it checks if the request can be performed concurrently. The
I/O threads are grouped so that, while one group of threads
perform parallel operations, the other groups can poll the
queue and start retrieving the other requested chunks. This
approach enables concurrent chunk retrieval and better utilizes
the available bandwidth.

Finally, the PIOL layer abstracts the data transfer protocols.
For example, a data resource that can be accessed through the
web must use the HTTP API, whereas another resource might
be accessed simply with the file system I/O interface. In some
cases, a single application may even be interacting with data
stored in locations with different APIs. The PIOL layer allows
a developer to implement I/O operations for different storage
resources.

B. Prefetching and the In-Memory Cache

An in-memory cache can help reduce decompression over-
heads, if certain data chunks are accessed repeatedly. We
further improve performance by having the in-memory cache
work in conjunction with a prefetching mechanism. The moti-
vation is two-fold: First, for large scientific datasets, the ratio
between memory buffer and total dataset size is very small.
Second, accesses to large datasets often involve predictable
patterns, which can be exploited to mechanize prefetching.

The cache in our system is composed of an ordered set
of rows. Each of these rows is a synchronized linked-list.
Therefore, any access to consecutive rows can be done concur-
rently. An insert operation to the cache is efficiently performed
through changing the pointers of the link list, and thus no data
copy operation is involved. Our cache employs LRU as the
default replacement policy.

Our cache does not only hold the data that is already
accessed but also the prospective data chunks that are likely
to be accessed. The prefetching mechanism allows the com-
pression system to create requests in advance. Although our
compression system provides several options for prefetching,
the user can also provide a customized prefetching algorithm
to the system. The compression system exposes an interface,
prefetch_t, which provides the history of the previously
requested data segments. The user can implement an algo-
rithm to analyze this information and provide hints to the
compression system about the prospective data chunks. Then
these prospective chunks are converted into chunk requests and
enqueued into the PCA layer’s queue for concurrent processing
and retrieval. The priority of retrieving and decompressing the
prospective chunk requests is lower than those of the original
chunk request. Therefore, whenever a real chunk request is
submitted to any of the system queues, it is pushed in front
of the prospective chunk requests and gets processed sooner.

C. Integration with a Data-Intensive Computing Framework

Our compression system can be ported into other applica-
tions with small modifications in the application layer. Even

though the underlying architecture is complex, it provides a
very simple interface, as shown in Table I, to the application
developer.

Local Cluster

Job Assignment

Slaves

Map
Reduce
Comp.

Sys.

Compressed
Local Dataset

Compressed
Remote Dataset

Fig. 4. System Architecture of Data-Intensive Computing Framework

We have ported our compression system into a data-
intensive computing framework [24], [13]. This framework
provides a Map-Reduce style API for processing data in a local
cluster, on the Amazon cloud, and data stored in a distributed
fashion across multiple clusters, and/or cloud environments.
This framework enables local or co-located analysis of data
similar to a Map-Reduce implementation. In addition, it allows
both remote and hybrid analyses. By remote analysis, we refer
to a situation where data is stored in a repository (possibly in
a cloud setting) that does not have resources for computation.
Thus, the data needs to be moved to another cluster for
analysis. In hybrid mode, data may be stored across a local
cluster and a cloud storage system, and/or may be analyzed
using resources from both local and cloud settings.

In Figure 4 we show the system architecture of the frame-
work with the compression system. A local reduction phase
comprises applying an initial processing computation to a
data element. After all the data elements in the system are
processed, the framework initiates the global reduction and
computes the final result. The slave nodes are responsible for
local reduction phase, while the master node is responsible for
assigning the data portions that will be processed by the slave
nodes, i.e., job assignment. In the hybrid mode, the master
node initially assigns the available local data before assigning
the remote data.

The compression system is embedded at the points where
the framework interacts with the data. All the data movement
in the system is performed with compressed data chunks. The
decompression operation would be invoked whenever the data
is returned to the application layer, i.e., the map and reduce
functions. This type of data movement does not only maximize
the data transmission throughput from a remote location, but
also improves the I/O bandwidth between the local storage
resources and the memory.

IV. EXPERIMENTAL RESULTS

This section reports the experimental setup and the results
from a detailed evaluation. Particularly, we have the following
goals in our experiments:

1) Evaluation of the compression ratio achieved by the
lossless and lossy versions of the climate compression
algorithm.

2) An analysis of the reduction in execution times of local,
remote, and hybrid data processing applications that are
built on top of our system.

3) An evaluation of the benefits from prefetching and
caching used in our compression system.

A. Experimental Setup

Datasets and Applications: We evaluate our system using
three applications. The first application AT is I/O-bound,
which calculates the average temperature of the different layers
in a high-resolution Global Cloud-Resolving Model (GCRM)
dataset. The GCRM climate dataset consists of temperature
points of the atmosphere with respect to location and time
frames. The atmosphere is divided into various layers and
each layers’ temperature is recorded single-precision floating
point numbers. The size of this dataset is 375.41 GB. The
second application MMAT finds the minimum, maximum, and
average temperatures of the different atmospheric layers with
respect to different time frames in same climate dataset.
The computational intensity is again low for this application,
however the volume of intermediate data exchange between
the nodes is higher than the AT application.

The third application kmeans is K-Means clustering, a
classic data mining application. It is a CPU-bound application,
and far more compute-intensive that the previous applications.
In our kmeans experiments, we have set X = 100, and it is
run over the NAS Parallel Benchmark (NPB) numeric message
log dataset. The NPB dataset is 237.69 GB in size, consisting
double-precision floating point values.

These three applications are implemented using the
aforementioned data-intensive processing framework, which
enables local, remote, and hybrid data processing. We ported
the compression system into the processing framework and
replaced the I/O functions with compression system’s I/O
interface.

Storage and Data Processing Platforms: Both datasets we
used are split between local storage and a cloud storage, in
order to help evaluate benefits of the compression system
using local, remote, and hybrid data analysis scenarios.

The storage system of the local cluster uses the lustre based
file system. It has 14 storage nodes with 27 Object Storage
Servers (OSS) and 1 Metadata Server (MDS). The nodes are
mounted over O2IB, which efficiently utilizes the Quad Data
Rate (QDR) InfiniBand network. This storage system provides
very high I/O throughput for processing nodes. We used
Amazon S3 for remote data storage, with the datasets located
at AWS’s Northern Virginia cluster. S3 provides relatively
lower I/O throughput compared to our local storage system.
We stored 270 GB of climate data in the local cluster, while the
remaining portion 105 GB is stored on S3. Similar to climate

dataset, the NPB dataset is separated into 166 GB stored in
the local cluster and 71 GB stored on S3.

The user-defined chunk sizes of compressed local and
remote datasets are set to 64MB and 512MB, respectively.
The larger chunk sizes result in less communication overhead
for the remote data retrieval. On the other hand, the high
performance local storage infrastructure provides enough I/O
throughput with 64MB chunk sizes for parallel decompression
and prefetching.

All processing nodes are allocated from the local cluster
located at the Ohio State University campus. Each compute
node contains Intel Xeon 2.53GHz processor (8 cores) with
12GB memory. These nodes are connected with InfiniBand
network. We used 16 compute nodes (total of 128 cores)
during our experiments.

Compression Methods: To choose an ideal baseline
for detailed comparison with our proposed approach, we
applied several well-known compression algorithms on a 2.2
GB climate dataset.

We considered two parameters while selecting a suitable
compression algorithm: Decompression speed and compres-
sion ratio. In Table II, we present compressed size of the
datasets, as well as the compression and decompression
times of various algorithms. The most efficient algorithm,
both in terms of performance and compression ratio, is our
domain-specific climate compression (CC) algorithm. The re-
maining algorithms possess different properties. LempelZiv-
Markov (LZMA) shows the most compression ratio whereas the
Lempel-Ziv-Oberhumer (1.ZO) algorithm is the fastest. Since
decompression time is a bottleneck for LZMA, LZO is selected
as a baseline algorithm for comparing against CC. LZO is a
generic compression algorithm which can be applied to any
dataset. It provides very fast decompression rates and is being
used by popular systems [33], [1].

TABLE II
INITIAL COMPRESSION ALGORITHM COMPARISON

[[[gzip [bzip2 | 1Tz0 [LzMA | CC |
Comp. Size (MB) [[1504 1304 1725 1113 | 1065
Comp Time (s) 191.44 | 380.18 | 367.74 | 371.88 | 12.63
Decomp Time (s) [[4497 | 167.83 | 17.754 | 13391 [9.75

Besides an evaluation of our climate dataset compression
method, we also wanted to demonstrate the generality of our
software framework. For the NPB dataset, we used an efficient
double-precision floating point compression (FPC) [14].

All the experimental datasets are compressed with param-
eters that yield to the highest compression ratios. In general,
the compression phase of the datasets might take a signif-
icant amount of time with these parameters. However, the
decompression rates of the selected compression algorithms
do not show significant changes. Since we focus on processing
large scientific datasets, efficient read operations and high
compression ratios are our priorities.

B. Compression Ratios

We first analyze the compression ratios of the algorithms
that we have used in our study. Table III shows the size of the

original dataset and the compressed datasets.

TABLE III
COMPRESSED DATASET SIZES

[[[orig [cC [cC-2e [CC-4e [FPC [LzO |
Climate|| 37541 | 185.15 | 161.88 139.15 - 298.97
(GB)

NPB 237.69 - - - 180.61 | 237.69
(GB)

The first row and column specify the type of the compres-
sion algorithms and the datasets, respectively. CC refers to the
lossless climate compression algorithm and CC-«e specifies
the number of dropped least significant bits for lossy climate
compression algorithm. The Orig column presents the orig-
inal dataset size. For the climate dataset, the compression
ratio of the lossless CC algorithm is 2.03:1, resulting in 51.68%
less space. The lossy climate compression algorithms generate
space savings of 56.88% and 62.93%, for CC-2e and CC-4e,
respectively. LZO uses 20.4% less space, so the compression
ratio of CC over LZO is 1.62:1, highlighting the benefits for
our design of a domain-specific scheme for climate/simulation
data. For the NPB dataset, the ratio of saved space is 24.01%
with FPC. Note that the LZO algorithm is not able to compress
the data.

We underline that compression provides at least three ben-
efits in a data analysis scenario. First, it can reduce storage
space requirements, and in the case of a cloud environment,
this translates to lower storage costs. Second, compression
can reduce data transmission costs when data analysis is
performed in remote or hybrid settings. Finally, it can reduce
data retrieval times. The second and third benefits above can be
negated by higher data analysis times, because of the need for
decompression after data retrieval. Thus, to understand the true
benefits of a compression scheme, we focus on the execution
times for a complete data analysis task in the next subsection.

C. System Performance

In our first set of experiments, we compare the execution
times of our data-intensive applications with different com-
pression algorithms and environmental settings. Each of the
test cases was repeated at least five times and the mean values
of the execution times are presented.

In Figure 5, we compare the execution times of the AT
application using the climate dataset, considering the three
different data storage/processing scenarios: local, remote, and
hybrid. For the local mode, only the local data (270 GB)
is being processed by the compute nodes. Since the I/O
operations are performed locally, the data throughput is higher.
The processing nodes retrieve data from a remote (cloud)
location in the remote setting where the total stored data size
is 105 GB. This type of processing involves more data retrieval
and movement time due to the limited wide-area bandwidth. In
hybrid setting, both local and remote data are being processed.
The hybrid mode simulates the scenarios where one dataset is
geographically distributed.

First, we show the overhead of our compression system.
The Original-Comp and Original present the elapsed
times for processing original (uncompressed) dataset with

and without compression system, respectively. The overhead
of our system is negligible. For Original-Comp, the
decode_t () function copies the retrieved data to the write-
buffer without applying any decompression algorithm. Our
compression system further avoids copy operations internally.
The only parts where the data is being written/copied are the
encoding and decoding functions. Since these operations are
done in memory, the system’s overheads are not noticeable.

1400

£ Original-Comp.
1200 -

[Original
l®@Lzo

N
1S)
S
o

BCC

3
=}
S

@
=]
=]

Execution Time (sec)

N
o
<)

N}
=}
S

o
i

Remote

Local

Fig. 5. Execution Times of the AT Application

1800

B Original

1600

Lzo
1400 +

::Jee
1200

1000

=3
o
<]

Execution Time (sec)

@
=}
s}

400

200

Local Remote Hybrid

Fig. 6. Execution Times of the MMAT Application

If we focus on different compression algorithms, we see
that processing the local dataset with CC algorithm shows a
1.67 speedup over processing the original dataset on the local
cluster.

As we noted earlier, there are two factors that impact the
performance of the application: the compression ratio of the
algorithm and decompression speed. The compression ratio of
the algorithm helps with bandwidth usage. The compression
ratio of the CC algorithm is more than 2, thus the same amount
of information can be read in half time. Therefore, from the
overall performance, we can see that decompression method
with the CC algorithm introduces only modest overheads.

The LZO compression algorithm shows small improvement
in the execution time. The speedup of using LZO is only 1.07
and the saved storage space is 20.4%. If we compare CC and
LZzO algorithms, we observe that CC outperforms LZO in both
execution time and storage space, again showing benefits of
developing domain-specific compression algorithms.

For the remote processing configuration, the application per-
formance increases with the compressed dataset and system.
Specifically, the speedups of CC and LZO algorithms are 1.81

and 1.24, respectively. The gained benefit from the remote
data retrieval times dominates the decompression overhead,
and thus decreases the total execution time of the application.

Lastly, we focus on the hybrid configuration. In this setting,
the application processes both local and remote data, which
is a common configuration when large scientific datasets
exceed the limit of local resources. The application still shows
significant performance increase with compression system and
algorithms. The speedups of using CC and LZO algorithms are
1.8 and 1.08, respectively.

In Figure 6, we show our results with the MMAT application.
The speedups of MMAT follow the same pattern as with the AT
application. The CC algorithm’s speedups are 1.63, 1.90 and
1.85 for local, remote and hybrid settings, respectively. LZO
compression, on the other hand, shows 1.04, 1,24 and 1.14
speedups for the same settings. Again, our domain-specific
compression shows better performance than the generic algo-
rithm.

1200

B Original
1000 - BFPA

800

600

Execution Time (sec)

400

Remote

Hybrid

Fig. 7. Execution Times of K-Means Application

To show the generality of our framework, we show the
results of kmeans application in Figure 7. Similar to pre-
vious experiments, the NPB dataset is separated into two
sets. The size of the stored data portions are 166 GB and
71 GB over local and remote resources, respectively. Recall
that kmeans is more compute-intensive than the previous
climate application. Our first observation is the small overhead
with FPC in the local setting, which provides relatively high
I/O throughput. Therefore, the decompression time results in
33.29% overall slowdown during the execution. If we focus on
remote and hybrid settings, we observe that the application can
benefit from the compression system and finish the execution
in a shorter time period. Similar to MMAT and AT, even
kmeans (which is much less I/O-intensive) can benefit from
the data retrieval time during the remote data transfer. This
gain dominates the decompression time and therefore can
decrease the overall execution time. The speedups are 1.12
and 1.30 for remote and hybrid settings, respectively.

To understand the trade-off ~ between data
retrieval/movement cost, reduction and decompression
times, we studied a detailed breakdown of performance. In
Figure 8, we present the detailed execution times of local and
remote configurations of MMAT. Original represents the
execution time of the original dataset. The Read represents
the elapsed time to read the data and transfer it to the
application layer. The Reduction represents the application

B Read
@ Decomp.
Reduction

1000 -+

=3
o
)

-y
=}
S}

N
o
S}

Execution Time (sec)

N
o
Is)

=}
L

Original cc

Original

Local Remote

Fig. 8. Breakdown of MMAT Execution Time

layer’s time taken to perform the computation. Since this
configuration does not work on the compressed dataset, the
decompression time, Decomp, is zero. If we compare the
data read time of Original and CC settings for the local
configuration, we can see that the speedup of using CC
for read operations is 1.96 over original dataset. However,
the decompression time introduces 15.41% overhead in CC
execution time. Thus, the overall speedup is 1.63.

D. Performance with Lossy Compression

We have repeated the same set of experiments with a
lossy CC algorithm and compared the execution times and
accuracy of the final results with the lossless version. Recall
that the climate dataset consists of single-precision floating
numbers which represent the temperature of different layers in
atmosphere. Our lossy CC algorithm drops the least significant
bits of the floating point numbers. Therefore, it provides
better compression ratios with reasonable error rates, without
increasing the complexity of compression or decompression.

800

mCC

~
o
S}

Lossy 2e

-
=]
)

T @ Lossy 4e

[
=3
=)

w
o
=]

Execution Time (sec)
B
o
o

N}
=}
S}

=
o
S}

o
L

Local Remote Hybrid

Fig. 9. Execution Times of Climate Application with Lossy Compression

In Figure 9, we present the results with different configura-
tions for AT application. Again, CC corresponds to the lossless
compression algorithm, whereas Lossy 2e and Lossy 4e
refer to lossy compression, dropping the last 2 and 4 bits,
respectively.

Our first, and expected, observation is the reduced execution
times with the lossy algorithms. The speedups for Lossy 2e
over the lossless compression algorithm are 1.07, 1.18 and
1.09 for local, remote, and hybrid settings. The Lossy 4e
provides 1.13, 1.43, and 1.18 for the same settings. A similar

trend can be observed with MMAT in Figure 10. The speedups
of using lossy compression algorithms range from 1.05 to 1.13
for Lossy 2e and 1.08 to 1.26 for Lossy 4e. Furthermore,
if we compare Lossy 4e with the Original in Fig. 6, the
speedups are 1.76, 2.41 and 2.18.

Clearly, use of a lossy compression method results in some
loss of accuracy for the final results. However, for the appli-
cations we have considered here, which focus on obtaining a
summary or aggregate information from a large dataset, we
find that the loss of accuracy is negligible. Specifically, the

error bound for our lossy algorithms is 5e=°.

1000

900 +
| BLossy 2e

@|cc

800
700 - B Lossy 4e

600

500
400

Execution Time (sec)

300
200
100

Local Remote

Hybrid

Fig. 10.
sion

Execution Times of Climate-Avg Application with Lossy Compres-

E. Benefits of Multithreading and Prefetching

In the previous set of experiments, the prefetching and mul-
tithreading mechanisms were not being used, and number of
I/O and processing threads were set to one. In the following set
of experiments, we implement the prefetch_t () function
so that it returns two prospective data blocks to the compres-
sion system after each I/O request from the application. While
the application processes the requested data, the compression
system fetches the prospective chunks and decompresses them
using the PIOL and PCE threads. We chose a different number
of PIOL and PCE threads and compared the execution times
using the FPC and CC compression schemes.

For example, the 2P-410 configuration denotes four PIOL
and two PCE threads. We typically use a larger number of
PIOL threads than the PCE threads. For each processing
thread, there are multiple I/O threads and hence, each chunk
can concurrently be fetched and decompressed. Note that each
chunk can be decompressed by only one PCE thread, but it can
be retrieved by many I/O threads. In this set of experiments, we
also assigned one of the CPU cores to specifically operate the
compression system. This would reduce the total computing
resources available for the application’s needs, and thus, we
need to examine if the benefits from multi-threaded decom-
pression can overcome the reduction in compute resources.

In Figure 11, we present the execution times of kmeans
with different numbers of PIOL and PCE threads. Focusing
on the local processing scenario, we can observe that the
execution times expectedly decrease with increasing number
of threads. The prefetching and caching mechanism in our
compression system efficiently overlaps the data retrieval and
decompression operations with application’s computation. If

1000

900 -
|| @2P-4I0

|| BFPC

800

B 4P - 810
700 +

600
500

400
300
200

Execution Time (sec)

100

Remote Hybrid

Fig. 11. Execution Times of K-Means Application with Different PIOL and
PCE Threads

the application requires more computation, the compression
system finds more opportunity to fetch and decompress the
prefetched data chunks. Since kmeans application requires
time for its computation, the compression system is able to
prepare prefetched chunks for the next request. The speedups
for this setting are 1.25 and 1.37 for 2P-4I0 and 4P-8IO,
respectively.

If we analyze the remote and hybrid settings, we see that
the application still benefits from the new configurations.
However, if we compare 4P-810 with 2P-410, we observe that
the application performance stays the same. The 2P-410 can
utilize all the bandwidth using 4 PIOL threads, thus 4P-810
is not able to provide any additional benefit. The speedups of
these settings range from 1.16 to 1.21.

1000

900 -+
| @2pP-4i0

BCC

800

B4P-8I0
700 +

600
500

400
300
200

Execution Time (sec)

100 -+
0 -

Local Remote

Hybrid

Fig. 12. Execution Times of MMAT Application with Different PIOL and
PCE Threads

Next, we consider the MMAT application, with results shown
in Figure 12. As we mentioned before, the prefetching and
caching mechanism of the compression system exploits the
computation time of the application. The MMAT application is
I/O bound, and therefore, for the local processing configura-
tion, the application finishes its computation and requests more
data chunks before it is fetched. Even though the system takes
advantage of the small computation time of the application, the
context switching of the threads introduced an overhead. The
slowdowns of the application are below 14% for this setting.
Similar to kmeans, the compression system maximizes the
utilization of the available bandwidth using PIOL threads for
remote data retrieval. Therefore, it is able to benefit from
parallel I/O requests. The speedups of hybrid and remote

configurations range between 1.05 and 1.11 for MMAT.

V. RELATED WORK

Compression [28], [20] has been an attractive topic for sys-
tems that deal with large datasets for a number of years. Our
proposed compression method is a variation of delta encoding
in which the relationships between adjacent data points are
exploited. There are many types of delta compression methods
which have been used in different areas, including signal
processing. Our compression method is specifically tailored
for GCRM dataset and takes advantage of its properties.

Another compression method which has similarities with
our approach is discrete quantization. This method is also
efficient in both space saving and (de)compression throughput,
which make it suitable for real time data analysis, including
stream processing [8]. It uses mean value in order to compute
the deltas of a group of data points. Then each data point
is mapped to a table cell, in which each cell is specified
with an n-bit value. The difference of original values and
delta are stored in these cells. The table size determines if the
compression method is lossy or not. This compression method
needs to store mean value, and the n-bit location information
for each of the data point. Considering the highly entropic
content of the scientific datasets, the table size might be large
which can easily be a bottleneck.

In filesystems, various compression systems are employed
to maximize available storage. For instance, Windows NTFS
provides transparent data compression using Lempev-Ziv algo-
rithm [17]. Similarly, FuseCompress [2], a mountable filesys-
tem, and e2compr [9], an extension for ext2, can be used to
add compression feature to Linux. Typically, the compression
algorithms provided by filesystems need to be generic to store
various data types. In contrast, we focus on efficient storage of
scientific datasets which are difficult to compress with generic
compression algorithms.

Compression has also extensively been used in database
systems in order to improve the storage requirements and the
query execution times[23], [6], [35], [30], [22]. ISABELA-
QA [26] is a parallel query processing engine which ex-
ploits knowledge priors. It enables efficient processing for
both spatial-region and variable-centric queries using com-
pressed scientific datasets and indices. Their system uses
ISABELA [27] for compressing the data.

Outside of databases, data-intensive middleware systems
have also explored the use of compression. Nicoloe, et al.
have developed BlobSeer, a distributed data management ser-
vice that provides efficient reading, writing, and appending
functionalities to its users [32]. A recent work by the same
authors focuses on a transparent compression system that is
built in BlobSeer [31]. Their system provides optimizations,
such as overlapping decompression with /O operations and
selecting the compression algorithm. While our system also
takes advantage of overlapping application computation and
(de)compression operations, we further use informed prefetch-
ing and pipelined decompression to increase concurrency.

Welton, et al. developed a set of compression services
that transparently perform compression operations [39]. Their
services run on data nodes that handle the I/O requests.

Apache has also initiated several projects for large-scale data
analysis and storage [4], [5]. These systems use generic
compression algorithms, such as LZO[1], [33], in order to
optimize I/0. Similarly, Google’s data storage and analysis
systems, MapReduce[18] and BigTable[15], take advantage
of compression algorithms; an example being Snappy[3]. An-
other data analysis system, DryadLINQ[41], uses compression
for its intermediate data exchange, thus improving the 1/O
throughput. These data-intensive frameworks provide generic
compression algorithms which do not perform well with
scientific datasets.

Schendel, et al. proposed a compression methodology,
ISOBAR, for detecting highly entropic contents in hard-to-
compress data, such as scientific datasets [37]. They consider
analyzing double precision floating point numbers byte-by-
byte, and then apply the best compressor. In [38], authors
introduce a hybrid framework which overlaps I/O and com-
pression operations. While we also focus on compressing
scientific datasets, we assume that the user has certain domain
specific insights about the data and can exploit its properties.
Therefore, a compression algorithm can directly apply a bit-
level compression and bypass byte-level analysis. Furthermore,
our system uses informed prefetching to further increase 1/0
performance and amortize the compression overhead.

Compression has also been used for enhancing the perfor-
mance and storage of cache and memory [34], [21], [19],
[36], [40]. A recent work of Makatos, et al. introduced
FlaZ, a transparent compression system, which leverages the
performance of SSD-based caches [29]. FlaZ operates on the
kernel level and resides in I/O path of user application and
SSD. It provides two generic compression algorithms, zlib and
LZO, and supports I/O concurrency. If the storage medium can
handle parallel I/O requests, e.g. SSDs, concurrent operations
can significantly increase the performance.

In comparison to these efforts, our focus is on compression
of scientific datasets and developing a system that provides an
easy-to-use API for integrating new compression algorithms,
while supporting optimizations such as prefetching and multi-
threaded decompression. Furthermore, our system can be
easily integrated with various data-intensive applications and
middleware systems.

There have been studies on the effects of using compres-
sion for energy efficiency. Although the energy efficiency of
compression algorithms has been researched in the context
of sensor networks and wireless devices [11], [10], research
on the energy consumption of modern data centers is more
recent. In [16], authors propose a decision algorithm that
allows users identify if compression is beneficial or not, in
terms of energy consumption. The authors implement their
system in MapReduce and show that compression can increase
the energy efficiency up to 60%. We have not studied energy
benefits from our system, though similar benefits can be
expected.

Other efforts have focused on management and dissemina-
tion of scientific simulation datasets, such as the earth’s cli-
mate system simulation data [12]. Transferring and accessing
climate datasets have been an active research topic [25], [7].

VI. CONCLUSION

This paper presented the challenge of making compression
more effective, practical, and usable for applications that
analyze large-scale scientific datasets. First, we introduced a
compression method which can efficiently compress and de-
compress highly entropic scientific datasets through exploiting
domain specific properties. Second, we developed a frame-
work in which different compression algorithms can easily be
integrated. This framework automatically parallelizes I/O and
(de)compression operations, and overlaps these with compu-
tation. Lastly, we presented how our compression framework
can easily be integrated with data-intensive middleware or
applications.

We have evaluated our work using two large datasets
(including a climate dataset) and three data processing ap-
plications. We find that our compression method results in
an average compression ratio of 51.68%. Moreover, it out-
performs the popularly known algorithm LZO by 38.07% in
space saving, and up to 39.76% in performance. For local,
remote, and hybrid data processing, the performance benefits
we obtain range between 40-53% over uncompressed dataset.
Our informed prefetching implementation, coupled with multi-
threaded decompression, results in up to 27% additional per-
formance improvement over the version without prefetching
or multi-threading.

ACKNOWLEDGMENT

The authors would like to thank Robert L. Jacob from Ar-
gonne National Laboratory for his support and assistance. This
work was supported in part by the Office of Biological and
Environmental Research, Office of Science, U.S. Department
of Energy, under contract DE-ACO2-O6CH11357.

REFERENCES

[1] Enabling LZO Compression in HBase. http://wiki.apache.org/hadoop/
UsingLzoCompression/, 2012. [Online; accessed September-2012].

[2] FuseCompress. http://code.google.com/p/fusecompress/, 2012. [Online;
accessed September-2012].

[3] Snappy. http://code.google.com/p/snappy/, 2012.
September-2012].

[4] The Apache Hadoop Project. http://hadoop.apache.org/, 2012. [Online;
accessed September-2012].

[5] The Apache HBase. http://hbase.apache.org/, 2012. [Online; accessed
September-2012].

[6] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and
execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data,
SIGMOD ’06, pages 671-682, New York, NY, USA, 2006. ACM.

[7]1 W. E. Allcock, I. T. Foster, V. Nefedova, A. L. Chervenak, E. Deelman,
C. Kesselman, J. Lee, A. Sim, A. Shoshani, B. Drach, and D. N.
Williams. High-performance remote access to climate simulation data:
a challenge problem for data grid technologies. In SC, page 46, 2001.

[8] F. Altiparmak, D. Chiu, and H. Ferhatosmanoglu. Incremental quan-
tization for aging data streams. In Proceedings of the Seventh IEEE
International Conference on Data Mining Workshops, ICDMW ’07,
pages 527-532, Washington, DC, USA, 2007. IEEE Computer Society.

[9] L. Ayers. E2compr: Transparent file compression for linux., 1997.

[10] S.J. Baek, G. de Veciana, and X. Su. Minimizing energy consumption
in large-scale sensor networks through distributed data compression
and hierarchical aggregation. Selected Areas in Communications, IEEE
Journal on, 22(6):1130 — 1140, aug. 2004.

K. C. Barr and K. Asanovi¢. Energy-aware lossless data compression.
ACM Trans. Comput. Syst., 24(3):250-291, Aug. 2006.

[Online; accessed

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

D. E. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A. L.
Chervenak, L. Cinquini, B. Drach, I. T. Foster, P. Fox, J. Garcia,
C. Kesselman, R. S. Markel, D. Middleton, V. Nefedova, L. Pouchard,
A. Shoshani, A. Sim, G. Strand, and D. N. Williams. The earth system
grid: Supporting the next generation of climate modeling research.
CoRR, abs/0712.2262, 2007.

T. Bicer, D. Chiu, and G. Agrawal. A Framework for Data-Intensive
Computing with Cloud Bursting. In Proceedings of Conference on
Cluster Computing, Sept. 2011.

M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compressor for
double-precision floating-point data. IEEE Trans. Computers, 58(1):18—
31, 2009.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2),
2008.

Y. Chen, A. Ganapathi, and R. H. Katz. To compress or not to compress
- compute vs. io tradeoffs for mapreduce energy efficiency. In P. Barford,
J. Padhye, and S. Sahu, editors, Green Networking, pages 23-28. ACM,
2010.

M. Corp. File Compression and Decompression in NTFS. http:
//msdn.microsoft.com/en-us/library/Aa364219/, 2012. [Online; accessed
September-2012].

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107-113, 2008.

F. Douglis. The compression cache: Using on-line compression to
extend physical memory. In In Proceedings of 1993 Winter USENIX
Conference, pages 519-529, 1993.

F. Douglis. On the role of compression in distributed systems. SIGOPS
Oper. Syst. Rev., 27(2):88-93, Apr. 1993.

M. Ekman and P. Stenstrom. A robust main-memory compression
scheme. In Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd
International Symposium on, pages 74 — 85, june 2005.

G. Graefe and L. Shapiro. Data compression and database performance.
In Applied Computing, 1991., [Proceedings of the 1991] Symposium on,
pages 22 —27, apr 1991.

T. H. Group. Szip Compression in HDFS5. http:/http://www.hdfgroup.
org/doc_resource/SZIP/, 2012. [Online; accessed September-2012].

W. Jiang, V. T. Ravi, and G. Agrawal. A Map-Reduce System with an
Alternate API for Multi-core Environments. In CCGRID, pages 84-93,
2010.

R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P.-T. Bremer, J. Bresna-
han, A. Cherry, L. Childers, E. Dart, I. Foster, K. Harms, J. Hick, J. Lee,
M. Link, J. Long, K. Miller, V. Natarajan, V. Pascucci, K. Raffenetti,
D. Ressman, D. Williams, L. Wilson, and L. Winkler. Lessons learned
from moving earth system grid data sets over a 20 gbps wide-area
network. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC 2010), Jun 2010.
S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla,
S.-H. Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova. Isabela-qa: query-driven analytics with
isabela-compressed extreme-scale scientific data. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC *11, pages 31:1-31:11, New York, NY, USA,
2011. ACM.

S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. B.
Ross, and N. F. Samatova. Compressing the incompressible with isabela:
In-situ reduction of spatio-temporal data. In E. Jeannot, R. Namyst,
and J. Roman, editors, Euro-Par (1), volume 6852 of Lecture Notes in
Computer Science, pages 366-379. Springer, 2011.

D. A. Lelewer and D. S. Hirschberg. Data compression. ACM Comput.
Surv., 19(3):261-296, 1987.

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas.
Using transparent compression to improve ssd-based i/o caches. In
C. Morin and G. Muller, editors, EuroSys, pages 1-14. ACM, 2010.
W. K. Ng and C. V. Ravishankar. Block-oriented compression techniques
for large statistical databases. IEEE Trans. on Knowl. and Data Eng.,
9(2):314-328, Mar. 1997.

B. Nicolae. High throughput data-compression for cloud storage. In
A. Hameurlain, F. Morvan, and A. Tjoa, editors, Data Management
in Grid and Peer-to-Peer Systems, volume 6265 of Lecture Notes in
Computer Science, pages 1-12. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-15108-81.

[32]

[33]

[34]

[35]
[36]

[37]

(38]

[39]

[40]

[41]

B. Nicolae, G. Antoniu, and L. Bougé. Blobseer: how to enable efficient
versioning for large object storage under heavy access concurrency.
In Proceedings of the 2009 EDBT/ICDT Workshops, EDBT/ICDT 09,
pages 18-25, New York, NY, USA, 2009. ACM.

M. Oberhumer. LZO, A real-time data compression library. http://
oberhumer.com/opensource/lzo/, 2012. [Online; accessed September-
2012].

0. Ozturk, M. T. Kandemir, and M. J. Irwin. Using data compression for
increasing memory system utilization. [EEE Trans. on CAD of Integrated
Circuits and Systems, 28(6):901-914, 2009.

M. Poss and D. Potapov. Data compression in oracle. In VLDB, pages
937-947, 2003.

L. Rizzo. A very fast algorithm for ram compression. SIGOPS Oper:
Syst. Rev., 31(2):36-45, Apr. 1997.

E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. Chang, S.-H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova. Isobar precondi-
tioner for effective and high-throughput lossless data compression. Data
Engineering, International Conference on, 0:138-149, 2012.

E. R. Schendel, S. V. Pendse, J. Jenkins, D. A. Boyuka, II, Z. Gong,
S. Lakshminarasimhan, Q. Liu, H. Kolla, J. Chen, S. Klasky, R. Ross,
and N. F. Samatova. Isobar hybrid compression-i/o interleaving for large-
scale parallel i/o optimization. In Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing,
HPDC ’12, pages 61-72, New York, NY, USA, 2012. ACM.

B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. B.
Ross. Improving i/o forwarding throughput with data compression. In
CLUSTER, pages 438-445, 2011.

P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for compressed
caching in virtual memory systems. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATEC *99, pages
8-8, Berkeley, CA, USA, 1999. USENIX Association.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. Dryadling: A system for general-purpose distributed data-
parallel computing using a high-level language. In R. Draves and R. van
Renesse, editors, OSDI, pages 1-14. USENIX Association, 2008.

