
Supporting Fault Tolerance in a Data-Intensive Computing Middleware

Tekin Bicer Wei Jiang Gagan Agrawal

Department of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210

{bicer,jiangwei,agrawal}@cse.ohio-state.edu

Abstract—Over the last 2-3 years, the importance of data-
intensive computing has increasingly been recognized, closely
coupled with the emergence and popularity of map-reduce for
developing this class of applications. Besides programmability
and ease of parallelization, fault tolerance is clearly important
for data-intensive applications, because of their long running
nature, and because of the potential for using a large number of
nodes for processing massive amounts of data. Fault-tolerance
has been an important attribute of map-reduce as well in its
Hadoop implementation, where it is based on replication of
data in the file system.

Two important goals in supporting fault-tolerance are low
overheads and efficient recovery. With these goals, this paper
describes a different approach for enabling data-intensive com-
puting with fault-tolerance. Our approach is based on an API
for developing data-intensive computations that is a variation
of map-reduce, and it involves an explicit programmer-declared
reduction object. We show how more efficient fault-tolerance
support can be developed using this API. Particularly, as the
reduction object represents the state of the computation on a
node, we can periodically cache the reduction object from every
node at another location and use it to support failure-recovery.

We have extensively evaluated our approach using two data-
intensive applications. Our results show that the overheads of
our scheme are extremely low, and our system outperforms
Hadoop both in absence and presence of failures.

Keywords-Fault tolerance; Map-Reduce; Data-intensive com-
puting; Cloud computing;

I. INTRODUCTION

The availability of large datasets and increasing impor-

tance of data analysis in commercial and scientific domains

is creating a new class of high-end applications. Recently,

the term Data-Intensive SuperComputing (DISC) has been

gaining popularity [1], reflecting the growing importance

of applications that perform large-scale computations over

massive datasets.

The increasing interest in data-intensive computing has

been closely coupled with the emergence and popularity

of the map-reduce approach for developing this class of

applications [2]. Implementations of the map-reduce model

provide high-level APIs and runtime support for developing

and executing applications that process large-scale datasets.

Map-reduce has been a topic of growing interest in the last

2-3 years. On one hand, multiple projects have focused on

trying to improve the API or implementations [3], [4], [5],

[6]. On the other hand, many projects are underway focusing

on the use of map-reduce implementations for data-intensive

computations in a variety of domains. For example, early in

2009, NSF funded several projects for using the Google-IBM

cluster and the Hadoop implementation of map-reduce for

a variety of applications, including graph mining, genome

sequencing, machine translation, analysis of mesh data, text

mining, image analysis, and astronomy1.

Even prior to the popularity of data-intensive computing,

an important trend in high performance computing has been

towards the use of commodity or off-the-shelf components

for building large-scale clusters. While they enable better

cost-effectiveness, a critical challenge in such environments

is that one needs to be able to deal with failure of individual

processing nodes. As a result, fault-tolerance has become

an important topic in high-end computing [7], [8]. Fault

tolerance is clearly important for data-intensive applications

because of their long running nature and because of the

potential for using a large number of nodes for processing

massive amounts of data.

Fault-tolerance has been an important attribute of map-

reduce as well in its Hadoop implementation [2]. Tradition-

ally, two common approaches for supporting fault-tolerance

have been based on checkpointing [9] and replication [10].

Among these, replication has been used in map-reduce

implementations, i.e., the datasets are replicated by the file

systems. The simple and high-level processing structure in

map-reduce further helps ease maintaining consistency and

correctness while recovering from failures.

In supporting fault-tolerance, low overhead and efficient

recovery are two of the important challenges. By low

overhead, we imply that adding failure recovery capabilities

should not slow down the system significantly in the absence

of failures. By efficient recovery, we imply that, in case of a

failure, the system should recovery and complete application

execution with reasonable time delays.

With this motivation, this paper presents an alternative

approach for supporting data-intensive computing with fault

tolerance. Our approach is based on an alternative API

for developing and parallelizing data-intensive applications.

While this API provides a similar level of abstraction to the

map-reduce API, it differs in having a programmer-declared

1http://www.networkworld.com/community/node/27219



reduction object. This API, particularly the reduction object,

forms the basis for low-cost and efficient support for fault-

tolerance. The key observation is that the reduction object

is a very compact summary of the state of the computation

on any node. Our approach for supporting fault-tolerance

involves frequently copying the reduction object from each

node to another location. If a node fails, the data not yet

processed by this node can be divided among other nodes.

Then, the reduction object last copied from the failed node

can be combined together with the reduction object from

other nodes to produce final (and correct) results. Note that

our work only targets the failure of processing nodes, and it

assumes that all data is still available.

Our approach has been implemented in the context of a

data-intensive computing middleware, FREERIDE-G [11],

[12]. This middleware system uses the alternative API to

develope scalable data-intensive applications. It supports

remote data analysis, which implies that data is processed

on a different set of nodes than the ones in which it is hosted.

We have evaluated our approach using two data-intensive

applications. Our results show that the overheads of our

approach are negligible. Furthermore, when a failure occurs,

the failure recovery is very efficient, and the only significant

reason for any slowdown is because of added work at other

nodes. Our system outperforms Hadoop both in absence and

presence of failures.

The rest of the paper is organized as follows. In Sec-

tion II, we explain our alternative API and then describe

the FREERIDE-G system in which our approach is im-

plemented. Details of our fault tolerance approach and

implementation are described in Section III. The results from

our experiments are presented in Section IV. We compare

our work with related research efforts in Section V and

conclude in Section VI.

II. BACKGROUND: PROCESSING API, REMOTE DATA

ANALYSIS, AND THE FREERIDE-G SYSTEM

This section gives an overview of the alternative API on

which our work is based. We then describe the remote data

analysis paradigm and the FREERIDE-G system, which uses

this alternative API and supports remote data analysis.

A. API for Parallel Data-Intensive Computing

Before describing our alternative API, we initially review

the map-reduce API which is now being widely used for

data-intensive computing.

The map-reduce programming model can be summarized

as follows [2]. The computation takes a set of input points

and produces a set of output {key, value} pairs. The user

of the map-reduce library expresses the computation as

two functions: Map and Reduce. Map, written by the user,

takes an input point and produces a set of intermediate

{key, value} pairs. The map-reduce library groups together

all intermediate values associated with the same key and

passes them to the Reduce function. The Reduce function,

also written by the user, accepts a key and a set of values for

that key. It merges together these values to form a possibly

smaller set of values. Typically, only zero or one output

value is produced per Reduce invocation.

Now, we describe the alternative API this work is based

on. This API has been used in a data-intensive computing

middleware, FREERIDE, developed at Ohio State [13], [14].

This middleware system for cluster-based data-intensive

processing shares many similarities with the map-reduce

framework. However, there are some subtle but important

differences in the API offered by these two systems. First,

FREERIDE allows developers to explicitly declare a reduc-

tion object and perform updates to its elements directly,

while in Hadoop/map-reduce, the reduction object is implicit

and not exposed to the application programmer. Another

important distinction is that, in Hadoop/map-reduce, all data

elements are processed in the map step and the intermediate

results are then combined in the reduce step, whereas in

FREERIDE, both map and reduce steps are combined into

a single step where each data element is processed and re-

duced before the next data element is processed. This choice

of design avoids the overhead due to sorting, grouping, and

shuffling, which can be significant costs in a map-reduce

implementation.

The following functions must be written by an application

developer as part of the API:

Local Reductions: The data instances owned by a processor

and belonging to the subset specified are read. A local

reduction function specifies how, after processing one data

instance, a reduction object (declared by the programmer),

is updated. The result of this process must be independent

of the order in which data instances are processed on each

processor. The order in which data instances are read from

the disks is determined by the runtime system.

Global Reductions: The reduction objects on all processors

are combined using a global reduction function.

Iterator: A parallel data-intensive application comprises of

one or more distinct pairs of local and global reduction

functions, which may be invoked in an iterative fashion.

An iterator function specifies a loop which is initiated after

the initial processing and invokes local and global reduction

functions.

Throughout the execution of the application, the reduction

object is maintained in main memory. After every iteration

of processing all data instances, the results from multiple

threads in a single node are combined locally depending

on the shared memory technique chosen by the application

developer. After local combination, the results produced by

all nodes in a cluster are combined again to form the final

result, which is the global combination phase. The global

combination phase can be achieved by a simple all-to-one

reduce algorithm. If the size of the reduction object is large,

both local and global combination phases perform a parallel



merge to speed up the process. The local combination and

the communication involved in the global combination phase

are handled internally by the middleware and is transparent

to the application programmer.

FREERIDE
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Process(e) ;
RObj(i) = Reduce(RObj(i),val) ;

}
Global Reduction to Combine RObj

}

Map-Reduce
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Process(e) ;
}
Sort (i,val) pairs using i
Reduce to compute each RObj(i)

}

Figure 1. Processing Structure: FREERIDE(top) and Map-Reduce(bottom)

Fig. 1 further illustrates the distinction in the process-

ing structure enabled by FREERIDE and map-reduce. The

function Reduce is an associative and commutative function.

Thus, the iterations of the for-each loop can be performed

in any order. The data-structure RObj is referred to as the

reduction object.

B. Remote Data Analysis and FREERIDE-G

Our support for fault-tolerance is in the context of sup-

porting transparent remote data analysis. In this model, the

resources hosting the data, the resources processing the data,

and the user may all be at distinct locations. Furthermore,

the user may not even be aware of the specific locations

of data hosting and data processing resources. As we will

show, separating the resource for hosting the data and those

for processing the data helps support fault-tolerance, since

failure of a processing node does not imply unavailability

of data.

If we separate the concern for supporting failure-recovery,

co-locating data and computation, if feasible, achieves the

best performance. However, there are several scenarios co-

locating data and computation may not be possible. For

example, in using a networked set of clusters within an

organizational grid for a data processing task, the processing

of data may not always be possible where the data is

resident. There could be several reasons for this. First,

a data repository may be a shared resource, and cannot

allow a large number of cycles to be used for processing

of data. Second, certain types of processing may only be

possible, or preferable, at a different cluster. Furthermore,

grid technologies have enabled the development of virtual

organizations [15], where data hosting and data processing

resources may be geographically distributed.

The same can also apply in cloud or utility computing. A

system like Amazon’s Elastic Compute Cloud has a separate

cost for the data that is hosted, and for the computing cycles

that are used. A research group sharing a dataset may prefer

to use their own resources for hosting the data. The research

group which is processing this data may use a different

set of resources, possibly from a utility provider, and may

want to just pay for the data movement and processing it

performs. In another scenario, a group sharing data may use

a service provider, but is likely to be unwilling to pay for

the processing that another group wants to perform on this

data. As a specific example, the San Diego Supercomputing

Center (SDSC) currently hosts more than 6 Petabytes of

data, but most potential users of this data are only allowed

to download, and not process this data at SDSC resources.

The group using this data may have its own local resources,

and may not be willing to pay for the processing at the same

service provider, thus forcing the need for processing data

away from where it is hosted.

When co-locating data and computation is not possible,

remote data analysis offers many advantages over another

feasible model, which could be referred to as data staging.

Data staging implies that data is transferred, stored, and

then analyzed. Remote data analysis requires fewer resources

at the data analysis site, avoids caching of unnecessary or

process once data, and may abstract away details of data

movement from application developers and users.

We now give a brief overview of the design and imple-

mentation of the FREERIDE-G middleware. More details

are available from our earlier publications [16], [12]. The

FREERIDE-G middleware is modeled as a client-server

system, where the compute node clients interact with both

data host servers and a code repository server. The overall

system architecture is presented in Figure 2.

Following is a brief description of four major components

of an implementation of our middleware that specifically

processes data resident in Storage Resource Broker (SRB)

servers.

SRB Data Host Server: A data host runs on every on-line

data repository node in order to automate data retrieval

and its delivery to the end-users’ processing node(s). Be-

cause of its popularity, for this purpose we used Storage

Resource Broker, a middleware that provides distributed

clients with uniform access to diverse storage resources in

a heterogeneous computing environment. This implemen-

tation of FREERIDE-G uses SRB server version 3.4.2&G

(Master and Agent) as its data host component. PostgreSQL

database software (version 8.1.5) and a separate ODBC



Compute Node

Retrieval
Metadata
Data &

client
SRB

MPICH−G2

Globus Toolkit

FREERIDE−G

Parallel Reduction

Execution
Data Analysis

Code 

Loader

Resource Allocation

Code Repository

Agent
SRB

MCAT

SRB Master

Data Host

Data Analysis Planning

API functions

Figure 2. FREERIDE-G System Architecture

driver (version 07.03.0200) were used to support the MCAT,

the catalog used to store metadata associated with different

datasets, users and resources managed by the SRB.

Code Repository Web Server: The code repository is used to

store the implementations of the FREERIDE-G-based appli-

cations, as specified through the API. The only requirement

for this component is a web server capable of supporting

a user application repository. For our current implementa-

tion and experimental evaluation we used Apache Tomcat

Web Server (version 5.5.25) to support the code repository,

XML descriptors for end-point addressing, and Java Virtual

Machine mechanisms for code retrieval and execution.

Compute Node Client: A compute node client runs on every

end-user processing node in order to initiate retrieval of

data from a remote on-line repository, and perform appli-

cation specific analysis of the data, as specified through the

API implementation. This component is the most complex

one, performing data and metadata retrieval, data analysis

planning, API code retrieval, and data analysis execution.

The processing is based on the generic loop we described

earlier, and uses application specific iterator and local and

global reduction functions. The communication of reduction

objects during global reductions is implemented by the

middleware using MPI. Particularly, MPICH-G2 and Globus

Toolkit 4.0 are used by this component to support MPI-based

computation in grid by hiding potential heterogeneity during

grid service startup and management.

Resource Allocation Framework: An important challenge in

processing remote data is to allocate computing resources

for such processing. Additionally, if a dataset is replicated,

we also need to choose a replica for data retrieval. We

have developed performance models for performing such

selection [11] and will be integrating it with the middleware

in the future.

Figure 2 demonstrates the interaction of system com-

ponents. Once data processing on the compute node has

been initiated, data index information is retrieved by the

client and a plan of data retrieval and analysis is created.

In order to create this plan, a list of all data chunks is

extracted from the index. From the worklist a schedule of

remote read requests is generated to each data repository

node. After the creation of the retrieval plan, the SRB-

related information is used by the compute node to initiate a

connection to the appropriate node of the data repository and

to authenticate such connection. The connection is initiated

through an SRB Master, which acts as a main connection

daemon. To service each connection, an SRB Agent is forked

to perform authentication and other services, with MCAT

metadata catalog providing necessary information to the

data server. Once the data repository connection has been

authenticated, data retrieval through an appropriate SRB

Agent can commence. To perform data analysis, the code

loader is used to retrieve application specific API functions

from the code repository and to apply them to the data.

III. FAULT TOLERANCE APPROACH

This section describes our approach and implementation

for supporting fault-tolerance in a remote data analysis

system.

A. Alternatives

Replicating jobs in the system is one way of tolerating

failures. In this approach, the job that processes the data

can be replicated, with all replicas working on the same

data. Therefore, all replicas should produce the same output.

In case of a failure, the system can continue its execution

by switching to one of the other replicas. This approach,



however, can be very expensive in terms of resource utiliza-

tion. Instead of using more processing nodes for speeding

up a single copy of the task, we use the same resources for

executing multiple replicas, limiting the speedup of any of

the replicas.

Another possibility could be to only replicate the input

data. In this case, if a node fails, the jobs based on this data

can be restarted on another node, which also hosts a replica

of the same data. This is the approach taken by current

map-reduce implementations. However, as we will show

experimentally, this approach results in a large slowdown

if a failure occurs close to finishing a task.

Another popular fault tolerance approach is checkpointing,

where snapshots of the system are taken periodically. The

state information of an application is stored in persistent

storage unit(s). In case of a failure, the most recent state

information can be retrieved, and the system can be recov-

ered. The main drawback of this approach is that a system’s

state information can be very large in size. This can result

in high overheads of taking and storing the checkpoints.

B. Our Approach

Our approach exploits the properties of the processing

structure we target. Let us consider the processing structure

supported by our middleware, shown earlier in Figure 1, top.

Let us suppose the set of data elements to be processed is

E. Suppose a subset Ei of these elements is processed by

the processor i, resulting in RObj(Ei). Let G be the global

reduction function, which combines the reduction objects

from all nodes, and generates the final results.

The key observation in our approach is as follows. Con-

sider any possible disjoint partition, E1, E2, . . . En, of the

processing elements between n nodes. The result of the

global reduction function,

(RObj(E1), RObj(E2), . . . , RObj(En))

will be same for any such disjoint partition of the element

set E. In other words, if E1, E2, . . . , En and E′

1
, E′

2
, . . . , E′

n

are two disjoint partitions of the element set E, then,

G(RObj(E1), RObj(E2), . . . , RObj(En)) =

G(RObj(E′

1
), RObj(E′

2
), . . . , RObj(E′

n))

This observation can be exploited to support fault-tolerance

with very low overheads. From each node, the reduction

object after processing of a certain number of elements is

copied to another location. We mark the set of elements that

have already been processed before copying the reduction

object. Now, suppose a node i fails. Let Ei be the set of

elements that were supposed to be processed by the node

i, and let E′

i be the set of elements processed before the

reduction object was last copied. Now, the set of elements

Ei − E′

i must be distributed and processed by the remaining

set of nodes. Thus, a node j will process a subset of the

elements Ei − E′

i, along with the set of elements Ej that

it was originally supposed to process. The reduction objects

resulting after such processing on the remaining n−1 nodes

can be combined together with the cached reduction object

from the failed node to produce the final results. By the

argument above, we know that this will create the same final

results as the original processing.

Although our system design can be viewed as a

checkpoint-based approach, it has significant differences.

First, unlike snapshots of the checkpoint-based systems, the

size of the reduction object is generally small for most of

the data mining applications. Therefore, the overhead of

storing the reduction object to another location is smaller

than storing the snapshots of the entire system. Furthermore,

we do not try to restart the failed process. Instead, by using

the properties of the processing structure, the work from the

failed node is distributed to other nodes, and final results

are computed. Our approach can be viewed as an adaptation

of the application-level checkpointing approach [7], [17].

Again, the key difference is that we exploit the properties

of reductions to redistribute the work, and do not need to

restart the failed process.

C. Fault Tolerance Implementation

We now discuss how our approach is implemented in

FREERIDE-G. Figure 3 shows the execution that takes place

in compute nodes and the logical data host in FREERIDE-

G. The logical data host is a virtual entity representing a set

of physical data hosts. The dataset is distributed among the

physical data hosts in chunks, which could be considered

as equivalent of disk blocks on the file system. Each data

chunk has a unique id.

When an application starts, the data chunks are evenly

distributed among the compute nodes using the chunk ids.

When a compute node starts its execution, it requests the

chunk ids, which are assigned to the compute node, and

the corresponding data chunks are retrieved from the data

hosts. After receiving the requested data chunk, the compute

node processes the data and accumulates the results onto

the reduction object. The key observation in our approach is

that the reduction object and the last processed data chunk

id can be correctly used as a snapshot of the system. If

this information is stored at another location, it can enable a

restart of the failed process at another node. The new process

will simply have to process all chunks that have an id higher

than the stored chunk id, and were originally given to the

failed node.

Furthermore, we can use the property of the reduction

we described not just to restart a failed process, but also

to redistribute the remaining chunks evenly across other

remaining/alive processes. The other processes can accumu-

late the results of the reduction from the chunks originally

assigned to them and the redistributed chunks. The resulting



Execution on the Logical Data Host:
INPUT:
CNs: Set of compute nodes in the system
CIDs: Ordered set of chunk ids

OUTPUT:
Compute nodes with assigned chunk ids
{* Find the number of chunks per compute node *}
ChPN = GetSize(CIDs) / GetSize(CNs);

{* Assign chunk ids to compute nodes *}
Foreach compute node cn in CNs {
{* Get compute node id *}
CNID = GetID(cn);
{* Find starting and ending chunk ids *}
StartID = CNID x ChPN;
EndID = StartID + ChPN;
{* Assign chunks to the compute node *}
Foreach chunkID cid from StartID to EndID {

Assign cid to cn;
}

}

Execution on a Compute Node:
INPUT:
CIDs: Ordered set of assigned chunkIDs

OUTPUT:
Reduc: Reduction object
{* Execute outer sequential loop *}
While () {
{* Execute reduction loop *}
Foreach chunk id cid in CIDs {

Retrieve data chunk c with cid;
Foreach element e in chunk c {
(i,val) = process(e);
Reduc(i) = Reduc(i) op val;

}
}
Perform Global Reduction

}

Figure 3. Application Execution in FREERIDE-G

reduction objects can be combined together with the cached

reduction object to obtain the final results.

Our implementation allows a system manager to configure

how the reduction objects can be cached. For the executions

used for obtaining results we will present, we grouped our

compute nodes together and set the storage location of the

snapshots as the other members of the group. Therefore,

after a compute node processes each data chunk, it replicates

its snapshot into the other compute nodes in the group. In

case of a failure, the group members can determine the

failure and recover from the stored replica. The size of the

group determines how many failures can be tolerated. If the

size of the group is 3, a reduction object is cached at 2 other

locations. Our system can tolerate failure of up to 2 nodes

from the group. If all members of a group fail, the system

cannot recover from failures. In our implementation, the size

of the group was 2.

Overall, the fault-tolerance implementation involves three

components:

Configuration: Before compute nodes start their data chunk

retrieval and processing, some information should be pro-

vided by the programmer to the fault tolerance system.

This includes the exchange frequency of reduction objects,

destination compute nodes where reduction object will be

saved, the number of connection trials before the node is

assigned as failed in the system, and exchange method for

reduction objects. The frequency of the reduction object

implies how frequently the reduction object is replicated in

the system. For instance, if the frequency number is 4, the

fault tolerance system waits until 4 data blocks have been

retrieved and processed, before communicating the reduction

object. A larger value reduces the overheads of copying,

communicating, and storing the reduction object. However,

it can also lead to more repeated work in case of a failure.

Fault Detection: FREERIDE-G invokes an initialization

function, which starts peer-to-peer communication among

the nodes in which the replicas will be stored. These

connections are kept alive during the execution. Whenever a

node fails, connections to the failed nodes become corrupt.

If the node is still not reachable by any of its peers after

a specific number of connection trials, it is considered as a

failed node in the system.

Fault Recovery: Computing nodes query if there is a failed

node in the system before they enter the global combination

phase. If a failed node is determined, then the recovery

process begins.

We further explain how our approach is integrated with

the processing in FREERIDE-G (Figure 4). First, the system

initializes the application specific constant values, such as

the node’s address in the network. Second, some of the

FREERIDE-G components are registered into our fault

tolerance system. This is necessary because in case of a

failure, the fault tolerance system needs to interact with the

FREERIDE-G components, thus reorganizing the work-flow

in order to process the failed node’s remaining data blocks.

The third step starts the fault tolerance communication

protocol among the nodes that will exchange the reduction

objects. Since this step involves initial data transfer among

the nodes, it also exchanges some valuable information such

as the data blocks that belong to the nodes. The fourth

step shows how we modified the processing structure of

FREERIDE-G and port our system into global and local re-

duction. Specifically, each retrieved data chunk is processed

by the local reduction function, and then it is accumulated

into the reduction object. The function SetNewStateInfor-

mation resets the state values in the fault tolerance system.

These values include last processed data block number and

current iteration number. The ReplicateSnapshot function

invokes the programmer’s API and starts transferring the

reduction object.

Currently, our system supports two types of exchange

method. The first is synchronous data exchange, which



Algorithm: Fault Tolerance System Implementation
INPUT:
ChunkIDs: Ordered set of assigned chunkIDs

OUTPUT:
Reduc: Reduction object
{* Initialize node specific information *}
InitNodeSpecInfo();

{*Register recovery related components *}
RegisterComponents();

{* Start fault tolerance system *}
StartFTS();

{* Execute outer sequential loop *}
While () {

Foreach chunk id cid in ChunkIDs {
Retrieve data chunk c with cid;
{* Process retrieved data chunk *}
{* Accumulate result into reduction obj *}
{* Set current state info. in FTS *}
SetNewStateInformation();

{* Store snapshot to another location *}
ReplicateSnapshot(Reduc);

}
If (CheckFailure()) {
RecoverFailure();

}
Perform Global Reduction

}

Figure 4. Compute Node Processing with Fault Tolerance Support

blocks the application until the fault tolerance system fin-

ishes the reduction object exchange. The second method is

asynchronous data exchange. If the programmer selects this

method in the configuration file, the communication protocol

of our fault tolerance system does not block the system’s

execution. More specifically, whenever FREERIDE-G in-

vokes the ReplicateSnapshot function, the fault tolerance

system copies the reduction object into its own context

and creates a thread. This thread starts the reduction object

exchange. However, if a thread is in progress when the

ReplicateSnapshot function is called, then system is blocked

until it finishes its data exchange. Therefore, if the sum

of data chunk retrieval time and data processing time are

longer than the reduction object exchange time, the over-

head of the fault tolerance system becomes minimal. Our

preliminary experiments demonstrated that the asychronous

method clearly outperform the synchronous method. Thus,

the results reported in the next section are only from the

asychronous implementation.

If a node finishes processing all of its data chunks, then

it is ready to enter the global reduction phase. Before it

enters this phase, it calls CheckFailure function which is

responsible for detecting the failed nodes. If there is no

failure, all the nodes enter the global reduction phase without

any interruption. Otherwise, if a node is assigned as failed in

the system, RecoverFailure function is invoked. This func-

tion initiates the recovery process, and the remaining data

blocks are distributed to the alive nodes in the system. The

next step is reorganizing the work flow of the FREERIDE-

G and restarting the local reduction loop with failed node’s

remaining data blocks. This process continues until all the

data blocks are processed. Finally, a global combination is

performed using the reduction objects from the remaining

nodes, and the cached reduction object(s) from failed nodes.

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we report results from a number of

experiments that evaluate our approach for supporting fault-

tolerance. The goals in our experiments include the follow-

ing. First, we want to evaluate the overheads our approach

involves if there are no failures. Second, we want to study

the slowdown in completion times when one of the nodes

fails. We particularly study this factor with varying failure

points, i.e., the fraction of the work that is completed by

a node before failing. Finally, we compare our approach to

the Hadoop implementation of map-reduce using both of the

above metrics.

The configuration used for our experiments is as follows.

Our compute nodes have dual processor Opteron 254 (single

core) with 4GB of RAM and are connected through Mel-

lanox Infiniband (1 Gb). As our focus is on tolerating failures

of processing cores, the data is stored on a separate set of

nodes. While we can tolerate failures of data hosting nodes

by replicating the data, it is not considered in our current

work.

For our experiments, we used two data-intensive appli-

cations, which are k-means clustering and Principal Com-

ponent Analysis (PCA). Clustering is one of the key data

mining problems and k-means [18] is one of the most

popular clustering algorithms. Similarly, Principal Compo-

nents Analysis (PCA) is a popular dimensionality reduction

method that was developed by Pearson in 1901. For k-means

clustering experiments, the number of cluster centers was

50 and this resulted in a reduction object with a size of 2

KB. We used two different dataset sizes: 6.4 GB and 25.6

GB. Each dataset was divided into 4096 data blocks and

evenly distributed into 4 data hosting nodes. The reduction

object size for PCA is 128 KB. For PCA experiments, two

different datasets were used: 4 GB and 17 GB, which were

again divided into 4096 data blocks.

A. Overheads of Supporting Fault-Tolerance

In this set of experiments, we examined the execution of

k-means clustering and PCA using three different versions:

Without fault tolerance support (Without FTS), with fault

tolerance support (With FTS), and the case when a fail-

ure actually occurs (With Failure). The first version,

Without FTS, is the earlier version of FREERIDE-G, and

cannot recover from any failure. The second version, With

FTS, provides failure recovery using the reduction object

exchange. For the experiments reported in this subsection,



this exchange is performed asynchronously after processing

of each data block or chunk. However, the results from this

version do not involve any failures or failure recovery. The

third version, With Failure, shows the execution time

of the system in case of a failure. For this subsection, this

failure is introduced after exactly 50% of the processing has

been completed by the failing nodes.

In our experiments, we used 4, 8 and 16 compute nodes.

Figure 5. Evaluating Overheads using k-means clustering (6.4 GB dataset)

In Figure 5, we show results from k-means using the 6.4

GB dataset. The overheads of the fault tolerance system

when no failure actually occurs, i.e., the With FTS version,

is very close to 0%. Even though this version is exchanging

the reduction objects, the small size of the k-means reduction

object and the use of asynchronous communication avoids

any overheads. Note that in some cases, this version is

actually slightly faster than the Without FTS version.

This is simply due to random variations in execution times,

as they include data retrieval and communication of data

from other nodes.

Now, we focus on the performance of the With

Failure versions. As one of the nodes is failing after

processing 50% of the data, and the remaining work is

being done by other nodes, we can clearly expect some

overheads. The relative slowdowns of the system are close

to 18% for 4, 5.4% for 8, and 6.7% for 16 compute nodes.

Note that in these three cases, the remaining work is being

distributed among 3, 7, and 15 nodes, respectively. Thus, the

higher overhead for the 4 nodes case is expected. We further

analyzed this relative slowdown. If we ignore the time spent

on the remaining nodes in processing the redistributed data,

the resulting slowdown can be considered as an absolute

overhead. This absolute overhead ranges between 0% and

3.2% for the three cases. The overhead is the highest for the

16 node case, and is likely because of the cost of detecting

failure, and the time spent determining how the data should

be redistributed.

Figure 6. Evaluating Overheads using k-means clustering (25.6 GB
dataset)

We repeated the same experiment with a larger dataset,

and the results are shown in Figure 6. The overheads of the

With FTS version are close to 0% for 4, 1.7% for 8 and

0% for 16 compute node cases. The relative slowdowns of

the FTS in case of With Failure version are 22% for 4,

12.3% for 8 and 7.4% for 16 compute nodes. Moreover, the

absolute overheads of the FTS are 4.6% for 4, 4.8% for 8,

and 3.9% for 16 compute node cases.

Figure 7. Evaluating Overheads using PCA clustering (4 GB dataset)

In Figure 7, the same experiments are reported with

PCA as the application and 4 GB of dataset. Considering

the With FTS version, the overheads of supporting fault

tolerance in our system are 15.4% for 4, 14.3% for 8, and 0%

for 16 compute nodes. The total volume of communication,

which depends on how many blocks are processed by each

node, is higher as we have a smaller total number of



nodes to process all data. Thus, for 4 and 8 node cases,

asynchronous data exchange does not seem to be able to

hide the communication latencies. As we stated earlier, the

size of the reduction object is large for PCA, which also

seems to contribute to higher overheads.

For the With Failure version, where one node fails

after processing 50% of the data, the relative slowdowns are

32.5%, 22.2%, and 8.1% for 4, 8, and 16 compute node

cases, respectively. After removing the times for processing

the redistributed data, the absolute overheads are only 8.5%,

14.1%, and 0.9% for 4, 8, and 16 nodes cases.

Figure 8. Evaluating Overheads using PCA clustering (17 GB dataset)

In Figure 8, we repeated the same experiment with 17

GB of data. Note that the larger dataset is still divided into

the same number of data blocks (4096), so the data block

size is now larger. As a result, more processing is now

performed between exchanging reduction objects. For the

With FTS versions, the overheads are 1.8% for 4 and 0%

for both 8 and 16 compute nodes. Clearly, as the relative

frequency of exchanging the reduction object is lowered,

the communication latencies can be hidden by asynchronous

exchanges.

Considering the With Failure versions, the relative

slowdowns are 21.2%, 8.6%, and 7.8% with 4, 8, and 16

compute node cases, respectively. The absolute overheads

are 3.9%, 1.4%, and 4.3%, for the 4, 8, and 16 node cases,

respectively.

B. Overheads of Recovery: Different Failure Points

In all experiments reported in the previous subsection,

all failures occurred after the failing node had processed

50% of the data. In this subsection, we further evaluate rel-

ative slowdowns and absolute overheads varying the failure

points. These failure points are now set to 25% (close to

beginning), 50% (middle) and 75% (close to end) of the

execution. We used the same datasets and set the number of

compute nodes to be 8 for each of the experiments.

Figure 9. K-means Clustering with Different Failure Points (25.6 GB
dataset, 8 compute nodes)

In Figure 9, the relative slowdowns are 16.6%, 9%, and

7.2%, with failures close to beginning, middle, and close to

end, respectively. The sooner the failure occurs, more work

needs to be redistributed among the remaining nodes. This

explains why the relative slowdowns decrease with a later

failure point. After removing the time spent on processing

redistributed data blocks, the absolute overheads are 5.3%,

1.7%, and 3.5%, for the three cases. In other words, the

absolute overheads of failure-recovery are very small in all

cases, and most of the other slowdowns are because of the

additional work being done by the remaining nodes.

Figure 10. PCA with Different Failure Points (17 GB dataset, 8 compute
nodes)

The same experiments were repeated with PCA and the

results are shown in Figure 10. The relative slowdowns

are 12.2%, 8.6% and 5.6%, with failure occurring close to

the beginning, middle, and close to end, respectively. The

absolute overheads are 1.3%, 1.4% and 1.9%, respectively,



for the same three cases.

C. Comparison of FREERIDE-G and Hadoop

As we had originally stated, our goal in this paper was

to present a method for fault-tolerant data-intensive comput-

ing, which has lower overheads and more efficient failure-

recovery as compared to map-reduce. So far in this section,

we have shown that our method has very low overheads.

Excluding the time the remaining nodes spend processing

additional data blocks, the recovery is also very efficient.

Now, we compare our approach and implementation, both

in absence and presence of failures, with a map-reduce

implementation. Hadoop is an open source version of map-

reduce and is being widely used. Thus, we have compared

our system with Hadoop. Because we did not have PCA

implemented using Hadoop, this comparison is performed

only with the k-means clustering application.

Hadoop supports fault-tolerance by replication of data.

There is no version of Hadoop available without support for

fault-tolerance. Thus, we compared the With FTS version

of FREERIDE-G with Hadoop, and then further compared

the two systems with failures at different points in execution.

Figure 11. Comparison of Hadoop and FREERIDE-G: Different No. of
Nodes - k-means clustering (6.4 GB Dataset)

In Figure 11, we compared two versions each from the

two systems. The first version is the normal execution times

of the systems and the second version is the execution times

of the systems in case of a failure. For both the systems, the

failure occurs on one of the compute nodes, after processing

50% of its data chunks. The versions in which failures

happen are referred to as w/f in the figure.

We can see that FREERIDE-G is faster than Hadoop and

scales better with increasing number of nodes. Furthermore,

when the failure occurs, Hadoop has higher overheads. The

overheads are 23.06%, 71.21% and 78.11% with 4, 8, and

16 compute nodes. On the other hand, the overheads of the

FREERIDE-G are 20.37%, 8.18% and 9.18% for 4, 8 and 16

compute nodes. As we had explained earlier, the slowdown

for FREERIDE-G becomes smaller as we go from 4 to 8

nodes, because the remaining data chunks from the failed

nodes can now be distributed among 7 other nodes, instead

of only 3. Note that the same trend should be true in going

from 8 to 16 nodes, but the resulting advantage is smaller,

and seems to be offset by other overheads in failure recovery.

In the case of Hadoop, we instead see a higher overhead

as the number of nodes is increased. The reason is that in

case of a failure, Hadoop needs to restart the failed node’s

tasks among the remaining compute nodes, and the overhead

of restarting the tasks increases while the number of the

compute nodes in the system increases.

Figure 12. Performance With Different Failure Points (k-means, 6.4 GB
dataset, 8 compute nodes)

The overheads of both Hadoop and FREERIDE-G at

different failure points are compared in Figure 12. The

Hadoop’s overheads are 32.85%, 71.21% and 109.45% for

the failure points 25%, 50%, and 75%. The FREERIDE-

G’s overheads are 6.69%, 5.77% and 5.34% for the same

failure points. We can see that in the case of FREERIDE-

G, the overheads are much smaller, and seem to decrease

as the failure occurs later during the execution. This is

because with a later failure point, fewer data chunks needs

to be redistributed and executed among other nodes. But,

in the case of Hadoop, the later the failure occurs, the

total execution time slowdown is higher. This is because

the state of computation is not cached in Hadoop. Instead,

data replication across nodes is its mechanism for fault-

tolerance. After a failure, the work already completed by

the failed node needs to be redone at one or more other

nodes, depending upon how the replication has been done

by the file system. Thus, the later the time the failure occurs,

the total time for the execution of the application is higher.



V. RELATED WORK

We now compare our work with existing work on fault-

tolerance for data-intensive computing, and on other promi-

nent efforts on fault-tolerance for parallel and distributed

computing.

The topics of data-intensive computing and map-reduce

have received much attention within the last 2-3 years.

Efforts underway include projects that have used and eval-

uated map-reduce implementations, as well as those that

are trying to improve performance and programmability.

However, beyond the original approach for fault-tolerance

in map-reduce, there has not been much work in this di-

rection. Projects in both academia and industry are working

towards improving map-reduce. CGL-MapReduce [3] uses

streaming for all the communications, and thus improves

the performance to some extent. Yahoo has developed Pig

Latin [5] and Map-Reduce-Merge [19], both of which are

extensions to Hadoop, with the goal being to support more

high-level primitives and improve the performance. Google

has developed Sawzall [6] on top of map-reduce to process

large document collections. Microsoft has built Dryad [4],

which is more flexible than map-reduce, since it allows

execution of computations that can be expressed as DAGs.

Dryad supports fault-tolerance by reexecuting computations.

We are not aware of any work evaluating its performance.

Phoenix is a system for enabling fault-tolerance for grid-

based data-intensive applications [20].

Our approach can be viewed as being somewhat similar to

the work from Cornell on application-level checkpointing for

parallel programs [7], [21], [17]. Their approach investigates

the use of compiler technology to instrument codes to enable

self-checkpointing and self-restarting. As we stated earlier,

our work can be viewed as an optimization and adaptation of

this work to a different execution environment and a specific

class of applications. The key difference in our approach

is that we exploit the reduction property of data-intensive

computations, and can redistribute the remaining work from

failed node across other processors. This turns out be more

efficient than restarting the process.

In recent years, fault-tolerance support for MPI processes

has been developed by several research groups. Checkpoint-

ing, coupled with message logging have been most often

used for supporting fault-tolerance [22], [23], [24], [8]. Some

approaches have also been based on replication [25].

In distributed and grid computing, much work has been

done on achieving fault-tolerance by running a number

of job replicas simultaneously [26], [27], [28], [10], [29],

[30]. Usually, these efforts involve a primary task and other

backup tasks. In the case of failure on the primary task,

processing continues on one of the backups. Considering

the checkpointing-based approaches, some efforts have been

taken to reduce the size of checkpoints. Zheng et al. [31]

have proposed an in-memory double checkpointing pro-

tocol for fault-tolerance. Without relying on any reliable

storage, the checkpoint data, which is encapsulated by the

programmer, is stored at two different processors. Also,

the checkpoints are taken at a time when the application

memory footprint is small. Another approach proposed by

Marques et al. [9] dynamically partitions objects of the

program into subheaps in memory. By specifying how the

checkpoint mechanism treat objects in different subheaps

as always save, never save and once save, they reduce the

checkpoint size at runtime. Our work has some similarities,

but the key difference is our ability to use the reduction

property to redistribute the remaining work across other

nodes.

VI. CONCLUSION

With growing class of applications that process large

datasets on commodity clusters, there is need for supporting

both programmability and fault-tolerance. This paper has de-

scribed a system that offers a high-level API for developing

data-intensive applications. Further, the properties associated

with the programs that can be expressed using this API are

exploited to provide a very low-overhead support for fault-

tolerance and failure-recovery.

We have evaluated our approach using two data-intensive

applications. Our results show that the overheads of our

approach are negligible. Furthermore, when a failure occurs,

the failure recovery is very efficient, and the only significant

reason for any slowdown is because of added work at other

nodes. Our system outperforms Hadoop both in absence and

presence of failures.

Acknowledgements:

This research was supported by NSF grants CCF-0833101

and IIS-0916196. The equipment used for our experiments

was purchased under the grant CNS-0403342.

REFERENCES

[1] R. E. Bryant, “Data-intensive supercomputing: The case for
disc,” School of Computer Science, Carnegie Mellon Univer-
sity, Tech. Rep. Technical Report CMU-CS-07-128, 2007.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of OSDI, 2004,
pp. 137–150.

[3] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data
intensive scientific analyses,” in IEEE Fourth International
Conference on e-Science, Dec 2008, pp. 277–284.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2007 EuroSys Conference.
ACM, 2007, pp. 59–72.

[5] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,” in
Proceedings of SIGMOD Conference. ACM, 2008, pp. 1099–
1110.



[6] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Inter-
preting the data: Parallel analysis with sawzall,” Scientific
Programming, vol. 13, no. 4, pp. 277–298, 2005.

[7] G.Bronevetsky, D.Marques, M.Schulz, P.Szwed, and
K.Pingali, “Application-level checkpointing for shared
memory programs,” in Proceedings of the 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2004), Oct.
2004, pp. 235–247.

[8] G. Stellner, “Cocheck: Checkpointing and process migration
for mpi,” in Proceedings of IPPS 1996, 1996, pp. 526–531.

[9] D. Marques, G. Bronevetsky, R. Fernandes, K. Pingali, and
P. Stodghill, “Optimizing checkpoint size in the c3 system,” in
Proceedings of the 19th International Parallel and Distributed
Processing Symposium (IPDPS), April 2005.

[10] J.H.Hwang, M.Balazinska, A.Rasin, U.Cetintemel,
M.Stonebraker, and S.Zdonik, “High-availability algorithms
for distributed stream processing,” in Proceedings of the
21st International Conference on Data Engineering (ICDE
2005), April 2005, pp. 779–790.

[11] L. Glimcher and G. Agrawal, “A Performance Prediction
Framework for Grid-based Data Mining Applications,” in In
proceedings of International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2007.

[12] L. Glimcher and G. Agrawal, “A Middleware for Developing
and Deploying Scalable Remote Mining Services,” in In
proceedings of Conference on Clustering Computing and
Grids (CCGRID), 2008.

[13] R. Jin and G. Agrawal, “Shared Memory Parallelization of
Data Mining Algorithms: Techniques, Programming Inter-
face, and Performance,” in Proceedings of the second SIAM
conference on Data Mining, Apr. 2002.

[14] R. Jin and G. Agrawal, “A middleware for developing parallel
data mining implementations,” in Proceedings of the first
SIAM conference on Data Mining, Apr. 2001.

[15] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
Grid: Enabling Scalable Virtual Organizations,” International
Journal of Supercomputing Applications, 2001.

[16] L. Glimcher, R. Jin, and G. Agrawal, “FREERIDE-G: Sup-
porting Applications that Mine Data Repositories,” in In pro-
ceedings of International Conference on Parallel Processing
(ICPP), 2006.

[17] G.Bronevetsky, D.Marques, K.Pingali, and P.Stodghill, “Au-
tomated application-level checkpointing of mpi programs,” in
Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2003), Oct.
2003, pp. 84–94.

[18] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Prentice Hall, 1988.

[19] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr., “Map-
reduce-merge: simplified relational data processing on large
clusters,” in Proceedings of SIGMOD Conference. ACM,
2007, pp. 1029–1040.

[20] G. Kola, T. Kosar, and M. Livny, “Phoenix: Making data-
intensive grid applications fault-tolerant,” in GRID, R. Buyya,
Ed. IEEE Computer Society, 2004, pp. 251–258.

[21] G.Bronevetsky, K.Pingali, and P.Stodghill, “Experimental
evaluation of application-level checkpointing for openmp pro-
grams,” in Proceedings of the 20th International Conference
on SuperComputing (SC 2006), Dec. 2006, pp. 2–13.

[22] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant dy-
namic mpi programs on clusters of workstations,” Cluster
Computing, vol. 6, no. 3, pp. 227–236, 2003.

[23] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and
F. Cappello, “Mpich-v project: A multiprotocol automatic
fault-tolerant mpi,” The International Journal of High Perfor-
mance Computing Applications, vol. 20, no. 3, pp. 319–333,
2006, iD: 363685160.

[24] J. Dongarra, P. Kacsuk, and N. Podhorszki, Eds., Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, 7th European PVM/MPI Users’ Group Meeting,
Balatonfüred, Hungary, September 2000, Proceedings, ser.
Lecture Notes in Computer Science, vol. 1908. Springer,
2000.

[25] R. Batchu, A. Skjellum, Z. Cui, M. Beddhu, J. P. Nee-
lamegam, Y. S. Dandass, and M. Apte, “Mpi/fttm: Archi-
tecture and taxonomies for fault-tolerant, message-passing
middleware for performance-portable parallel computing,” in
CCGRID. IEEE Computer Society, 2001, pp. 26–33.

[26] T.Tsuchiya, Y.Kakuda, and T. Kikuno, “Fault-tolerant
scheduling algorithm for distributed real-time systems,” in
Proceedings of the 3rd Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS 95), April 1995, pp. 99–103.

[27] J.H.Abawajy, “Fault-tolerant scheduling policy for grid com-
puting systems,” in Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS),
April 2004, pp. 238–245.

[28] X. Zhang, D. Zagorodnov, M. Hiltunen, K. Marzullo, and
R. Schlichting, “Fault-tolerant grid services using primary-
backup: Feasibility and performance,” in Proceedings of the
2004 IEEE International Conference on Cluster Computing,
September 2004, pp. 105–114.

[29] M.Balazinska, H.Balakrishnan, S. Madden, and
M.Stonebraker, “Fault-tolerance in the borealis distributed
stream processing system,” in Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data,
June 2005, pp. 13–24.

[30] R.Murty and M.Welsh, “Towards a dependable architecture
for internet-scale sensing,” in Proceedings of the 2nd Work-
shop on Hot Topics in Dependability (HotDep06), Nov. 2006.

[31] G. Zheng, L. Shi, and L. V.Kale, “Ftc-charm++: An in-
memory checkpoint-based fault tolerant runtime for charm++
and mpi,” in Proceedings of the 2004 IEEE International
Conference on Cluster Computing, September 2004, pp. 93–
103.


