
A Framework for Elastic Execution of Existing MPI Programs

Aarthi Raveendran Tekin Bicer Gagan Agrawal

Department of Computer Science and Engineering, Ohio State University

{raveendr,bicer,agrawal}@cse.ohio-state.edu

Abstract—There is a clear trend towards using cloud re-
sources in the scientific or the HPC community, with a key
attraction of cloud being the elasticity it offers. In executing
HPC applications on a cloud environment, it will clearly
be desirable to exploit elasticity of cloud environments, and
increase or decrease the number of instances an application is
executed on during the execution of the application, to meet
time and/or cost constraints. Unfortunately, HPC applications
have almost always been designed to use a fixed number of
resources.

This paper describes our initial work towards the goal of
making existing MPI applications elastic for a cloud frame-
work. Considering the limitations of the MPI implementations
currently available, we support adaptation by terminating one
execution and restarting a new program on a different number
of instances. The components of our envisioned system include
a decision layer which considers time and cost constraints, a
framework for modifying MPI programs, and a cloud-based
runtime support that can enable redistributing of saved data,
and support automated resource allocation and application
restart on a different number of nodes.

Using two MPI applications, we demonstrate the feasibility
of our approach, and show that outputting, redistributing, and
reading back data can be a reasonable approach for making
existing MPI applications elastic.

I. INTRODUCTION

Scientific computing has traditionally been performed

using resources on supercomputing centers and/or various

local clusters maintained by organizations. However, in the

last 1-2 years, cloud or utility model of computation has

been gaining momentum rapidly. Besides its appeal in the

commercial sector, there is a clear trend towards using cloud

resources in the scientific or the HPC community.

The notion of on-demand resources supported by cloud

computing has already prompted many users to begin adopt-

ing the Cloud for large-scale projects, including medical

imaging [1], astronomy [2], BOINC applications [3], and

remote sensing [4], among many others. Many efforts have

conducted cost and performance studies of using Cloud en-

vironments for scientific or data-intensive applications. For

instance, Deelman et al. reported the cost of utilizing cloud

resources to support a representative workflow application,

Montage [2]. Palankar et al. conducted an in-depth study on

using S3 for supporting large-scale computing[5]. In another

work, Kondo et al. compared cost-effectiveness of AWS

against volunteer grids [3]. Weissman and Ramakrishnan

discussed deploying Cloud proxies [6] for accelerating web

services.

Multiple cloud providers are now specifically targeting

HPC users and applications. Though initial configurations

offered by the cloud providers were not very suited for

traditional tightly-coupled HPC applications (typically be-

cause they did not use high performance interconnects), this

has been changing recently. In November 2010, Mellanox

and Beijing Computing Center have announced a public

cloud which will be based on 40 Gb/s Infiniband. Amazon,

probably the single largest cloud service provider today,

announced Cluster Compute Instances for HPC in July 2010.

This allows up to a factor of 10 better network performance

as compared to a regular collection of EC2 instances, and

an overall application speedup of 8.5 on a “comprehensive

benchmark suite”1.

The key attractions of cloud include the pay-as-you-

go model and elasticity. Thus, clouds allow the users to

instantly scale their resource consumption up or down

according to the demand or the desired response time.

Particularly, the ability to increase the resource consumption

comes without the cost of over-provisioning, i.e., having

to purchase and maintain a larger set of resources than

those needed most of the time, which is the case for the

traditional in-house resources. While the elasticity offered

by the clouds can be beneficial for many applications and

use-scenarios, it also imposes significant challenges in the

development of applications or services. Some recent efforts

have specifically focused on exploiting the elasticity of

Clouds for different services, including a transactional data

store [7], data-intensive web services [8], and a cache that

accelerates data-intensive applications [9], and for execution

of a bag of tasks [10].

While executing HPC applications on a cloud environ-

ment, it will clearly be desirable to exploit elasticity of

1Please see www.hpcinthecloud.com/offthewire/Amazon-Introduces-
Cluster-Compute-Instances-for-HPC-on-EC2-98321019.html



cloud environments, and increase or decrease the number of

instances an application is executed on during the execution

of the application. For a very long running application, a

user may want to increase the number of instances to try

and reduce the completion time of the application. Another

factor could be the resource cost. If an application is not

scaling in a linear or close to linear fashion, and if the user

is flexible with respect to the completion time, the number of

instances can be reduced, resulting in lower nodes×hours,

and thus a lower cost.

Unfortunately, HPC applications have almost always been

designed to use a fixed number of resources, and cannot

exploit elasticity. Most parallel applications today have

been developed using the Message Passing Interface (MPI).

MPI versions 1.x did not have any support for changing

the number of processes during the execution. While this

changed with MPI version 2.0, this feature is not yet

supported by many of the available MPI implementations.

Moreover, significant effort is needed to manually change the

process group, and redistribute the data to effectively use a

different number of processes. Thus, existing MPI program

are not designed to vary the number of processes. Adaptive

MPI [11] can allow flexible load balancing across different

number of nodes, but requires modification to the original

MPI programs, and can incur substantial overheads when

load balancing is not needed. Other existing mechanisms

for making data parallel programs adaptive also do not

apply to existing MPI programs [12], [13]. Similarly, the

existing cloud resource provisioning frameworks cannot help

in elastic execution of MPI programs [14], [15], [16].

This paper describes our initial work towards the goal

of making existing MPI applications elastic for a cloud

framework. Considering the limitations of the MPI imple-

mentations currently available, we support adaptation by

terminating one execution and restarting a new program on

a different number of instances. To enable this, we create a

modified version of the original program. This version of the

code allows monitoring of the progress and communication

overheads, and can terminate at certain points (typically, at

the end of an iteration of the outer time-step loop) while

outputting the live variables at that point. Moreover, it is

capable of restarting the computation, by reading the live

variables, and knowing the iteration to restart with.

The components of our envisioned system include:

• An automated framework for deciding when the num-

ber of instances for execution should be scaled up

or down, based on high-level considerations like a

user-desired completion time or budget, monitoring

of the progress of the application and communication

overheads.

• A framework for modifying MPI programs to be elastic

and adaptable. This is done by finding certain points in

the program where the monitoring code can be added,

and where variables identified to be live can be output

to allow a restart from a different number of nodes. Our

long-term goal is to develop a simple source-to-source

transformation program to generate the two versions

with these capabilities.

• A cloud-based runtime support that can enable re-

distributing of saved data, and support for automated

resource allocation and application restart on a different

number of nodes.

This paper describes the runtime framework developed

for the Amazon EC2 environment to enable a proof-of-

concept validation of our overall idea. Using two MPI

applications, we demonstrate the feasibility of our approach,

and show that our monitoring framework has a negligible

overhead, and outputting, redistributing, and reading back

data for adapting application can be a reasonable approach

for making existing MPI applications elastic.

II. BACKGROUND: AMAZON CLOUD

We now give some background on the Amazon Web

Services (AWS), on which our work has been performed.

AWS offers many options for on-demand computing as

a part of their Elastic Compute Cloud (EC2) service. EC2

nodes (instances) are virtual machines that can launch snap-

shots of systems, i.e., images. These images can be deployed

onto various instance types (the underlying virtualized archi-

tecture) with varying costs depending on the instance type’s

capabilities.

For example, a Small EC2 Instance (m1.small), ac-

cording to AWS2 at the time of writing, contains 1.7 GB

memory, 1 virtual core (equivalent to a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor), and 160 GB disk storage.

AWS also states that the Small Instance has moderate

network I/O. In stark contrast, an Extra Large EC2 instance

(m1.xlarge) contains 15 GB memory, 4 virtual cores with

2 EC2 Compute Units each, 1.69 TB disk storage with high

I/O. Many other such instance types exist, also with varying

costs and capabilities.

Amazon’s persistent storage framework, Simple Storage

Service (S3), provides a key-value store with simple ftp-

2AWS Instance Types, http://aws.amazon.com/ec2/instance-types



style API: put, get, del, etc. Typically, the unique keys

are represented by a filename, and the values are themselves

the data objects, i.e., files. While the objects themselves are

limited to 5 GB, the number of objects that can be stored

in S3 is unrestricted. Aside from the simple API, the S3

architecture has been designed to be highly reliable and

available. It is furthermore very inexpensive to store data

on S3.

Another feature of AWS is the availability of compute

instances with three options: on-demand instances, reserved

instances, and spot instances. An on-demand instance can be

acquired and paid for hourly. Organizations can also make

a one-time payment for reserved instances, and then receive

a discount on the hourly use of that instance. With spot

instances, Amazon makes its unused capacity, at any time,

available through a lower (but variable) price.

III. FRAMEWORK DESIGN

This section describes the design of our dynamic resource

allocation framework. We will first describe the overall goals

of our framework. Then, we will explain the necessary mod-

ifications on the source code for allowing elastic execution

and then explain the functionality of the various modules of

the framework in detail.

A. Overall Goals

As we stated earlier, we are driven by the observation that

parallel applications are most often implemented using MPI

and designed to use a fixed number of processes during the

execution. This is a crucial problem considering the driving

features of cloud services, i.e., elasticity and the pay-as-you-

go model.

The problems we address with our framework can be

categorized as dynamic resource (de)allocation and data

distribution among the reallocated resources during the exe-

cution. We considered two constraints that can be specified

by the user. The user defined constraints are either based on

a specific time frame within which the user would want the

application to complete, or based on a threshold value of the

cost that they are willing to spend. Clearly, it is possible that

the execution cannot be finished within the specified time or

the cost. Thus, these constraints are supposed to be soft and

not hard, i.e, the system makes the best effort to meet the

constraints. The system is also being designed to be capable

of providing feedback to the user on its ability to meet these

constraints.

These goals are accomplished with several runtime sup-

port modules and making modifications to the application

source code. In the long-term, we expect these source code

modifications to be automated through a simple source-to-

source transformation tool.

B. Execution Model and Modifications to the Source Code

Input: monitor iter, iter time req,
curr iter, range

Output: true if solution converges, false otherwise

{* Initiate MPI *}
data := read data();
t0 := current time();
While curr iter<MAX ITER Do

{* Call update module *}
rhonew := resid(data);
If rhonew<EPS Then

return true;
Endif
If (curr iter%monitor iter) = 0 and curr iter 6= 0 Then

t1 := current time();
avg time := (t1-t0)/curr iter;
If avg time>(iter time req + range) Then

{* Store data to a file *}
{* Inform decision layer and expand resources *}

Else If avg time<(iter time req − range) Then
{* Store data to a file *}
{* Inform decision layer and shrink resources *}

Endif
Endif
curr iter := curr iter+1;

Endwhile
return false;

Figure 1. Execution Structure Dynamic Resource Allocation for MPI
Programs

Our framework specifically assumes that the target HPC

application is iterative in nature, i.e., it has a time-step

loop and the amount of work done in each iteration is

approximately the same. This is a reasonable assumption

for most MPI programs, so this does not limit the applica-

bility of our framework. This assumption, however, has two

important consequences. First, the start of each (or every

few) iteration(s) of the time-step loop becomes a convenient

point for monitoring of the progress of the application.

Second, because we only consider redistribution in between

iterations of the time-step loop, we can significantly decrease

the check-pointing and redistribution overhead. Particularly,

a general check-pointing scheme will not only be very

expensive, it also does not allow redistribution of the data

to restart with a different number of nodes.

In Figure 1, we show how we modified the source code of

an iterative application and implemented the decision logic.



Scale Up/Down Nodes
m to n

Back to Top
If Not Complete

1 2 3 n

1 2 3 m

M
onitoring L

ayer
R
E
S
U

1 2 3 m

Combine

Split

1 2 n3

Decision Layer

Cost

Time

O/P

Source C
ode M

odified V
ersion

Figure 2. Execution Flow

The monitoring interval, the required iteration time, current

iteration, and the range are taken as runtime parameters.

The monitoring interval determines the number of iterations

after which the monitoring has to be done.

Our approach assumes that the user has a fixed execution

time in mind, and the system can allocate more nodes to

finish the execution if needed. In practice, our framework

can consider other constraints, such as the need to minimize

the execution cost while staying within a time-limit. In such

a case, our framework can reduce the number of nodes,

provided the predicted execution time will stay within the

limit.

In Fig. 1, the required iteration time is calculated by

the decision layer based on the user’s input. This value

is used for checking the progress of the program based

on the average iteration time. At any point, if there is a

necessity to stop and restart the program on a new number

of nodes, it is important to know how many iterations have

already been completed and from which point the new set

of nodes have to continue. This is given as one of the inputs,

curr iter, to the program. The main iteration is thus started

from curr iter. The value of this variable in the first run is

zero. It is also important to make sure that reallocation of

the processing nodes is not done so frequently, otherwise

the overhead of restart of the nodes and redistribution of

the data might not be tolerable. A control parameter called

range in this code, is given as another input to the program.

Hence, every time the average iteration time is compared

with the required iteration time, it is checked if the former

falls within a range around the latter. Based on the deviation

from the range, the decision to change the number of nodes

is made. For each iteration, after processing the matrix, the

application checks the computation time if the monitoring

interval has been completed. If the average iteration time is

above the required range, it means that the progress is not

good enough and hence scaling up of the number of nodes

will be necessary. On the contrary, if it is below the range,

the application can afford to run slower and instance cost

can be cut down by deallocating some of the nodes as the

progress is much better than expected.

In the case where scaling has to be done, a decision is

made and so the data needs to be redistributed among a

new number of processes. The data which is distributed

among the current set of processes needs to be collected

at the master node and redistributed to the new set of nodes.

It is important to note here that not all data involved in

the program needs to be carried over to the subsequent

iterations. Only the live variables (and arrays) at the start

of a new iteration need to be stored and redistributed.

Furthermore, if the array is read-only, i.e. it has not been

modified since the start of the execution, it does not need

to be stored back before terminating one execution. Instead,

the original dataset can be redistributed and loaded while

restarting with a different set of nodes.

In our framework, each processes stores a portion of the

array that needs to be collected and redistributed to a file in

the local directory. Other components of our framework are

informed of the decision of the monitoring layer to expand

or shrink the resources. The application returns true if the

solution is converged, so that the decision layer does not



restart it again. In case, the solution is not converged, false is

returned which indicates that restarting and redistribution are

necessary. The application is terminated and the master node

collects the data files from the worker nodes and combines

them . After launching the new nodes or deallocating the

extra nodes based on the decision made by the monitoring

layer, the decision layer in the master node splits the data

and redistributes it to the new set of nodes.

The application is started again and all the nodes read the

local data portions of the live arrays that were redistributed

by the decision layer. The main loop is continued from

this point and the monitoring layer again measures the

average iteration time and makes a decision during the

monitoring interval. If the need of restarting does not arise

and the desired iteration time is reached, then the application

continues running . Otherwise, the same procedure of writing

the live data to local machines, copying them to master node

and restarting the processes are repeated. Figure 2 depicts

the execution flow of the system.

As we stated above, our goal is to develop a simple

source-to-source transformation tool which can automat-

ically modify the MPI source code. The main steps in

the transformation will be: 1) identifying the time-step

loop, which is typically the outer-most loop over the most

compute-intensive components of the program, 2) finding

live variables or arrays at the start of each iteration of the

time-step loop, and finding the read-only variables, and 3)

finding the distribution of the data used in the program.

C. Runtime Support Modules

We now describe the various components of our frame-

work. The interaction between these components is shown

in Figure 3. Also, note that the role of the monitoring layer

has already been explained above, so we do not elaborate

it any further. The monitoring layer keeps interacting with

the decision layer, which initiates a checkpointing, to be

followed by resource allocation, and then redistribution and

restart.

Decision Layer: The decision layer interacts with the user

to get the inputs and preferences of time and cost. It also

interacts with the application program on monitoring the

progress and deciding if a redistribution is needed. Most

of the underlying logic has been explained in the previous

subsection. In near future, we will expand the decision

layer to monitor the communication overheads incurred by

the application. This will allow a better prediction of the

execution time of the application while using fewer or more

nodes.

Resource Allocator: One of the ways our framework en-

ables elastic execution is by transparently allocating (or

deallocating) resources in the AWS environment, and con-

figuring them for the execution of the MPI program. New

instances are requested and monitored by resource allocator

until they are ready. For execution of the program, an

MPI cluster needs to be set-up. The MPI implementation

used is MPICH2 and the process manager employed is

mpd (multipurpose daemon) that provides both fast startup

of parallel jobs and a flexible run-time environment that

supports parallel libraries. The mpd daemon needs to be

started so that it can spawn the mpich processes. The main

advantage of mpd is that they can start a job on several nodes

in less than a second. It also has fault tolerance - it can start

jobs and deliver signals even in the face of node failure. For

the mpd job launcher to work correctly, each of the nodes

has to open connection with two of its nearest neighbors and

hence all the nodes should form a communication ring. The

order of this ring does not matter. A Python script is used

for this MPI configuration process. It runs commands to get

the current state of the instances, their host-names and the

external domain names. A hosts file containing a list of host-

names has to be present in every node, as this will help mpd

to initiate the execution among the processes. The nodes are

configured for a password-less login from the master node

and the host file is copied over from the master node to the

slave nodes. Then, mpd is booted on the master node and

all the other nodes join the ring. Once this is completed,

the MPI environment is set and ready to run parallel jobs

on multiple instances. The binary code has to be present

on all nodes before execution and is hence copied from the

master node to the other nodes by the resource allocator

layer. The application can now be launched by giving the

required iteration time as a runtime parameter.

In case a reallocation or deallocation is needed, the data

portions residing on the nodes need to be collected at the

master node, combined together, and then redivided into

the new number of nodes. This is illustrated in Figure 2

where the number of nodes is being scaled from m to n.

The redivided data is then transferred to the new group of

instances, which read the data and continue working on them

from the point where they were terminated. Thus the whole

process is repeated until the program finishes its execution.

Check-pointing and Data Redistribution Module: Data

collection and redistribution depend on the type of appli-

cation and the type of data. Multiple design options were

considered for this, in view of the support available on AWS.



Figure 3. Components of Our Framework

Amazon S3 is a storage service provided by Amazon that

can be accessed by the EC2 instances. For arrays that are

not modified at each iteration can be stored in small sized

chunks in S3. Later, during a node launch, each of the nodes

can download the chunks of data required by them and

continue with their computation. This design is very efficient

for unaltered data as it saves the overhead of writing to and

reading from a file. For variables that are modified in each

iteration, file writes and reads are used to write and read

the data. The remote file copy command, scp, is used to

transfer files to the master node, and again for copying the

new pieces of each node.

Combining and redistributing data require the knowledge

of how the original dataset was divided among the pro-

cesses (e.g.: row-wise, column-wise, two-dimensional etc.).

Currently, this information is provided as an annotation to

our framework. In the future, our source-to-source trans-

formation tool can be used to automatically extract this

information. Based on the data distribution information and

the number of initial and final instances, our redistribution

module can generate the portions of the dataset each node

will need.

Note that our current design performs aggregation and

redistribution of data centrally on a single node. This can

easily be a bottleneck if the initial and/or the final number

of instances is quite large. In the future, we will implement

more decentralized array redistribution schemes [17].

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we evaluate our approach and framework

performance with 2 applications. We demonstrate the fea-

sibility of our approach and show the performance of the

runtime modules we have implemented.

Our experiments were conducted using 4, 8, and 16

Amazon EC2 small instances. The processing nodes com-

municate using MPICH2. We evaluated our framework with

two MPI applications: Jacobi and Conjugate Gradient (CG).

Jacobi is a widely used iterative method which calculates the

eigenvectors and eigenvalues of a symmetric matrix. Since

the Jacobi application processes and manipulates the matrix

in each iteration, the updated matrix needs to be collected

and redistributed among the compute nodes in the case of

adaptation. The data redistribution is done using parallel

data transfer calls, and the overhead of the data transmission

time is significantly reduced. The NAS CG is a benchmark

application that calculates the largest eigenvalue of a sparse,

symmetric, positive definite matrix, using the inverse itera-

tion method. A specific number of outer iterations is used

for finding the eigenvalue estimates and the linear system

is solved in every outer iteration. The dominant part of the

CG benchmark is a matrix vector multiplication. The matrix

is a sparse one and stored in compressed row format. This

matrix is not manipulated during the program execution, thus

it can be stored in a shared storage unit, i.e. the Amazon S3.

The matrix is divided into chunks, and these chunks can be

distributed, retrieved, and processed by the allocated EC2



instances.

The matrix processed for our Jacobi execution had 9K

× 9K double values (∼618 MB). This matrix needs to be

collected and redistributed in the case of compute instance

reallocation. For CG, the matrix has 150K × 150K double

values. However, only the vector needs to be redistributed,

and its size is 1.14 MB.

Table I
JACOBI APPLICATION WITHOUT SCALING THE RESOURCES

No.
Nodes

W/O
Redist.
(sec)

W/
Redist.
(sec)

MPI
Config.
(sec)

Data
Movement
(sec)

Overhead
(%)

4 2810 2850 71 3 0.01

8 1649 1720 89 2.5 0.04

16 1001 1087 87 3.6 0.09

Our first experiment involved executing Jacobi for 1000

iterations, and redistributing once (after 500 iterations). To

be able to evaluate the redistribution and restart overhead, we

“redistributed” the execution with the same number of nodes.

This version included overheads of MPI configuration, data

redistribution, copying of the source files to all nodes, and

the actual program restart. Table I presents the execution

times and the major overheads associated with redistribu-

tion of data, particularly, the MPI configuration and data

movement costs. The overheads of our system range from

0.01% to 0.1% and show small increments with increasing

number of compute instances. The main reason for the

overhead is due to the MPI configuration time. It consists

of collecting the host information of the newly initiated

computing instances and preparing the configuration file that

lets MPI daemon set up the MPI groups. This process can

introduce small overheads, however the larger computation

times are expected to further dominate these times. The

parallel data redistribution effectively transfers the updated

data, and minimizes the data transmission time.

We can also see reasonable speedups with increasing

number of instances. Since the communication tends to

be relatively slow between Amazon EC2 instances, the

speedups are not close to linear. As stated above, we are

redistributing once between 1000 iterations. Our overheads

will be relatively higher if we redistribute more often. But,

even if the redistribution was done after every 50 iterations,

based on the above experiments, the overheads will still be

less than 2%.

In Table II, we show how our runtime modules perform

when the system actually scales up and down. The Overhead

column now shows the estimated overheads, considering

Table II
JACOBI APPLICATION WITH SCALING THE RESOURCES

Starting
Nodes

Final
Nodes

MPI
Config.
(sec)

Data
Movement
(sec)

Total
(sec)

Overhead
(%)

4 8 81 3 2301 0.03

4 16 84 3 1998 0.05

8 4 80 3 2267 0.02

8 16 95 3.8 1386 0.04

16 4 99 3.5 2004 0.05

16 8 97 3 1390 0.05

a projected execution time derived from the related W/O

Redist. columns of Table I. As we saw in the previous exper-

iments, the overheads stay very low (0.02-0.05% overhead

for redistributing once in 1000 iterations). The MPI configu-

ration is the dominating factor for the overall overhead and

it increases while the numbers of final nodes increase for

the same starting nodes configuration.

Table III
CG APPLICATION WITHOUT SCALING THE RESOURCES

No.
Nodes

W/O
Redist.
(sec)

W/
Redist.
(sec)

MPI
Config.
(sec)

Data
Movement
(sec)

Overhead
(%)

4 834 879 25 2.5 0.05

8 997 980 58 3 0

16 1030 1105 96 2.7 0.07

The same set of experiments were reported with CG and

the results are presented in Tables III and IV. Redistribution

was now performed once during 75 iterations of the appli-

cation. The first observation from these results is that unlike

Jacobi, the performance of CG does not improve with an

increasing number of nodes. This is because CG is more

communication-intensive. We expect that improvements in

communication performance in clouds will help speedup an

application like CG in the future (Amazon Cluster Compute

Instance apparently has improved performance, though we

have not yet experimented with it).

Table IV
CG APPLICATION WITH SCALING THE RESOURCES

Starting
Nodes

Final
Nodes

MPI
Config.
(sec)

Data
Movement
(sec)

Total
(sec)

Overhead
(%)

4 8 43 3 930 0.02

4 16 60 3 999 0.07

8 4 40 4 942 0.03

8 16 81 3 1060 0.05

16 4 58 3 1003 0.08

16 8 82 3 1080 0.07



Table IV shows the execution times when the system

scales up and down. The overhead of the system increases

with the increasing number of the compute nodes. The short

computation time, the nodes that need to be configured and

the data redistribution result in extra overhead with large

number of compute instances. However, the overheads are

still quite low.

V. CONCLUSIONS

This paper has described our initial work towards the

goal of making existing MPI applications elastic for a cloud

framework. We have proposed an overall approach and

have developed several runtime modules. Our approach is

based on terminating one execution and starting another

with a different number of nodes. Our evaluation with 2

applications has shown that this has small overheads, and

elastic execution of MPI programs in cloud environments is

feasible.

REFERENCES

[1] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance
cloud computing: A view of scientific applications,” Parallel
Architectures, Algorithms, and Networks, International Sym-
posium on, vol. 0, pp. 4–16, 2009.

[2] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The cost of doing science on the cloud: the montage
example,” in SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 1–12.

[3] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P.
Anderson, “Cost-benefit analysis of cloud computing versus
desktop grids,” in IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Process-
ing. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 1–12.

[4] J. Li, et al., “escience in the cloud: A modis satellite data
reprojection and reduction pipeline in the windows azure
platform,” in IPDPS ’10: Proceedings of the 2010 IEEE In-
ternational Symposium on Parallel&Distributed Processing.
Washington, DC, USA: IEEE Computer Society, 2010.

[5] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon s3 for science grids: a viable solution?” in DADC
’08: Proceedings of the 2008 international workshop on
Data-aware distributed computing. New York, NY, USA:
ACM, 2008, pp. 55–64.

[6] J. Weissman and S. Ramakrishnan, “Using proxies to accel-
erate cloud applications,” in Proc. of the Workshop on Hot
Topics in Cloud Computing (HotCloud), 2009.

[7] S. Das, D. Agrawal, and A. E. Abbadi, “ElasTraS: An Elastic
Transactional Data Store in the Cloud,” in Proceedings of
Workshop on Hot Topics in Cloud (HotCloud), 2009.

[8] H. Lim, S. Babu, and J. Chase, “Automated Control for
Elastic Storage,” in Proceedings of International Conference
on Autonomic Computing (ICAC), Jun. 2010.

[9] D. Chiu, A. Shetty, and G. Agrawal, “Elastic cloud caches for
accelerating service-oriented computations,” in Proceedings
of SC, 2010.

[10] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-Scaling with
Deadline and Budget Constraints,” in Proceedings of GRID
2010, Oct. 2010.

[11] C. Huang, G. Zheng, L. V. Kalé, and S. Kumar, “Performance
evaluation of adaptive mpi,” in PPOPP, J. Torrellas and
S. Chatterjee, Eds. ACM, 2006, pp. 12–21.

[12] G. Edjlali, G. Agrawal, A. Sussman, and J. Saltz, “Data paral-
lel programming in an adaptive environment,” in Proceedings
of the Ninth International Parallel Processing Symposium.
IEEE Computer Society Press, Apr. 1995, pp. 827–832.

[13] J. B. Weissman, “Predicting the cost and benefit of adapting
data parallel applications in clusters,” J. Parallel Distrib.
Comput., vol. 62, no. 8, pp. 1248–1271, 2002.

[14] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.
Berman, and P. Maechling, “Scientific workflow applications
on amazon ec2,” CoRR, vol. abs/1005.2718, 2010.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in CCGRID, F. Cappello, C.-L.
Wang, and R. Buyya, Eds. IEEE Computer Society, 2009,
pp. 124–131.

[16] L. Rodero-Merino, L. M. V. Gonzalez, V. Gil, F. Galán,
J. Fontán, R. S. Montero, and I. M. Llorente, “From infras-
tructure delivery to service management in clouds,” Future
Generation Comp. Syst., vol. 26, no. 8, pp. 1226–1240, 2010.

[17] R. Thakur, A. Choudhary, and J. Ramanujam, “Efficient
algorithms for array redistribution,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 6, pp. 587–594,
Jun. 1996.


