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Abstract

A maximum a posteriori (MAP) approach is proposed for X-ray diffraction tomogra-

phy for reconstructing three-dimensional spatial distribution of crystallographic phases

and orientations of polycrystalline materials. The approach maximizes the posterior

density which includes a Poisson log-likelihood and a prior term that reenforces expected

solution properties such as smoothness or local continuity. The reconstruction method

is validated with experimental data acquired from a section of the spinous process of a

porcine vertebra collected at the 1-ID-C beamline in the Advanced Photon Source, at

Argonne National Laboratory. The preliminary results show significant improvement

on reduction of streaking artifacts, and robustness to noise and undersampling than the

conventional analytical inversion approaches. The approach has the potential to reduce

data acquisition times, and significantly improve beamtime efficiency.
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1 Introduction

X-ray powder diffraction is a routine analytical tool for characterization of materials, and

when combined with tomography, it becomes a powerful technique for studying three-

dimensional (3D) spatial distribution of crystallographic phases and orientations of polycrys-

talline materials [?]. When a monochromatic X-ray beam irradiates a specimen containing

a multitude of single crystals which have various orientations, the diffraction pattern con-

sists of concentric Debye cones from the different crystallographic planes, characterized by

the index triplet hkl, the so-called Miller indices [?]. For a narrow, pencil-shaped incident

X-ray beam, and an area detector positioned normal to the beam, the cones intersect the

detector plane as a series of concentric rings whose opening angles, i.e., diffraction angles

2θhkl depend on X-ray wavelength λ, and inter-planar spacing dhkl (and lattice parameters)

through Bragg’s law: λ = 2dhkl sin θhkl [?]. In X-ray diffraction tomography (XDT), the

pencil beam is translated across the specimen, producing a ”projection” image data, and

the process is repeated for the projection angles required for reconstruction. Often a scalar,

additive quantity is required for each raster scan location as an input to the reconstruction

algorithms, and the conventional approach is to integrate the diffraction rings radially, con-

verting the 2D diffraction patterns into 1D radial diffraction patterns. Each 2θ bin then

produces a separate reconstruction I2θ(x, y) of the sample’s cross-section, where I is the

intensity of the volume element or voxel at position x, y within the slice. Then, for a single

x, y one can combine I from the different 2θ reconstructions to produce a 1D diffraction

pattern for that voxel.

Analytical methods like filtered back projection (FBP) [?] has been the traditional

method of choice for reconstructing the 3D crystallographic phases within the specimen.

While FBP provides fairly quick and robust results, the reconstruction quality is severely af-

fected with increasing undersampling and noise. Statistical approaches, on the other hand,

often provides better quality images, because they allow for incorporating better models of
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the imaging physics, and also allows for utilizing prior information about possible solutions

when the data is incomplete [?]. This provides a great flexibility in inverse modeling for

dealing with sub-optimal data acquisition schemes. Many similar problems are formulated

by modeling a cost function corresponding to a probability distribution over model param-

eters, and the goal is to obtain the maximum a posteriori (MAP) model estimates that are

consistent with existing data and prior assumption about the solutions [?]. In this paper, a

similar approach is proposed for X-ray diffraction tomography for reconstructing 3D spatial

distribution of crystallographic phases and orientations of polycrystalline materials. The

approach maximizes the posteriori density which includes a Poisson log-likelihood and a

prior term that reenforces expected solution properties such as smoothness or local continu-

ity. The reconstruction method is validated with experimental data acquired from a section

of the spinous process of a porcine vertebra to image the spatial crystalline orientations in

the sample. The advantage of this approach is that prior knowledge such as smoothness or

roughness can be imposed on the reconstructed diffraction patterns, which in turn improves

the accuracy of the reconstructed phases.

Similar to other statistical iterative algorithms, the proposed method also demands sig-

nificant computational resources in order to obtain reconstructions within a reasonable time.

Each iteration requires solution of the forward problem, which calculates the Radon inte-

grals along each beam path for a given diffraction angle. This process is a highly compute-

intensive task and needs efficient parallel algorithms and high-end computing systems. We

implemented our reconstruction algorithms on a high-performance data-intensive comput-

ing middleware [?] and performed image reconstruction at Argonne Leadership Computing

Facility. Specifically, we ran our experiments on Mira, a 10-petaflops IBM Blue Gene/Q

system. We used up to 1200 nodes where each node consists of 16 physical cores (19200

cores in total) and 16GiB memory. The execution time of 3D reconstruction takes only

about 240 milliseconds per single MAP iteration, which indicates that the reconstruction
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Figure 1: Schematic illustration of synchrotron instrumentation at the 1-ID-C beamline in
the Advanced Photon Source, at Argonne National Laboratory. High-energy X-rays incident
on the sample are forward-scattered into Debye cones, which are measured with four GE
detectors. The sample is translated along B-axis and rotated in w to provide diffraction-
tomography data. Transmission data is collected simultaneously with ion-chambers before
and after the sample.

can be performed near-real time. The following sections describe the performed diffraction

experiment, and the individual data processing steps to obtain the final crystalline phases

of the material.

2 Materials and methods

2.1 Measurement setup

XDT measurements were acquired from a spinous process of a porcine vertebra acquired

at the 1-ID-C beamline in the Advanced Photon Source, at Argonne National Laboratory,
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using an X-ray energy of 52 keV formed by an undulator and brilliance-preserving monochro-

mator (see, Figure ?? for schematic illustration). The X-ray beam was horizontally defined

by slits along B-axis, and vertically focused along A-axis using refractive lenses to provide

a beam size of 25 × 50 (A-B) µm at the sample location. Diffraction data was recorded

using four GE RT-41 panels, arranged as shown in Figure ?? to collect different portions of

Debye rings, nominally perpendicular to the direct beam, and at a sample-detector distance

of 2165 mm. The detectors were calibrated (tilt/beam center) using a National Institute

of Standards and Technology (NIST) ceria standard. To collect a XDT dataset for a given

layer (A-position), detector images were taken at 1 second intervals, over 184 degrees in w

at 2 degree steps (Nw = 93). The sample was then translated 200 µm along B-axis and

this process repeated for a total of 110 positions (NB = 110) to cover the entire sample

cross-section, for a total collection time of about 3 hours per layer. Multiple layers (NA = 5)

were recorded, here we focus on results from a single layer.

2.2 Data preprocessing

The recorded intensity maps at a particular beam position are shown in Figure ??. At first,

the input data are transformed from polar to Cartesian coordinates to perform radial inte-

gration over the highlighted triangular regions around the vertical and horizontal directions.

The radial positions are then transformed to d-spacings using geometric parameters given in

the previous section. Often the powder diffraction curve follows a smooth trajectory along

the radial direction, consisting of Bragg peaks resting on a smooth background. This can

be mathematically expressed by,

I =
∑
p

Ip + Ib. (1)

According to this expression, the measured intensity I has both a contribution from the

background signal Ib, and each of the Bragg reflections Ip near peak locations. Note that the
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Figure 2: Powder diffraction measurement that was recorded using four GE RT-41 panels
at a particular beam position is shown on the left. A radial integration is performed
along the highlighted vertical (A-axis) and horizontal (B-axis) directions to obtain the
corresponding 1D diffraction patterns at each beam position. Often this pattern follows a
smooth trajectory along the radial direction, consisting of Bragg peaks resting on a smooth
background.

background signals are considered as statistically independent from the crystalline diffrac-

tion processes. This allows for a straightforward background subtraction over a specified

range as follows,

I
′
ij = Iij −

1

2e+ 2

 e∑
j=0

Iij +
r∑

j=r−e
Iij

 , i = 1, . . . , η (2)

where r and η are the total number of pixels in radius and azimuth axes, respectively, and the

term in brackets is the background. The scalar e determines the number of boundary pixels

on each side of the radial image to be used for calculation of the background, and usually

selected a few pixels in size. In this expression, we assume the approximation, I
′ ≈

∑
p Ip

holds, which is generally a valid argument assuming slow variations in background intensity.

These I
′
ij values, i.e., the background corrected intensity distributions for each diffraction,

are then used for tomographic image reconstruction as described in the next section.
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Figure 3: A three-dimensional ”data cube” (with 2D spatial and 1D d-space variations),
and the interactions among neighboring voxels in spatial coordinates and d-spacings are
illustrated at the top. The regularization function for various δ values are plotted at the
bottom.

2.3 Image reconstruction

This section describes the process of reconstructing the crystalline phases for each point

in the sample from the background corrected diffraction data. We formulate the problem

in a MAP framework by combining the data likelihood and prior terms, which leads to a

discrete optimization problem in the general form of [?]:

xMAP = arg max
x≥0
{L(x, y)− βR(x)} , (3)

where xMAP is the so-called MAP estimate. x ∈ RN and y ∈ RM are respectively the dis-

crete model and data parameters. The objective function consists of a Poisson log-likelihood

L(x, y) and prior terms R(x) to regularize variations among the local neighborhood of the

model parameters. The regularization parameter β is to control the trade-off between the

data likelihood and the prior terms. The MAP estimator formulated in this way can also be
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interpreted as a penalized maximum likelihood estimator [?]. With this approach, instead

of directly maximizing the data-likelihood [?], a number of prior terms can be used to reen-

force desired (e.g. smoothness, sharpness) and/or certain (e.g. non-negativity) properties

of the solution [?]. A common form of a prior term is [?]:

R(x) =
∑
i

∑
j∈N

wijψ(xi − xj), (4)

where ψ(.) is a user-defined functional with dependency only on the difference values of

model parameters in a set of voxels (N) in a neighborhood of the ith voxel, that is, eight

neighboring voxels in the spatial cross-section, and two voxels in the neighboring d-spacings

(see, Figure ?? for a visual illustration of the prior model). The constants wij are nonneg-

ative weights that satisfy wij=wji for all i and j. The weights are normally set inversely

proportional to the Euclidean distance between the neighboring voxels. Often, ψ(x) is se-

lected from monotonically nondecreasing functions of quadratic forms, that is, (xi − xj)2,

which leads to smooth images while greatly reducing the likelihood of sharp transitions

of the model parameter across adjacent voxels. Non-quadratic forms can as well be used,

particularly to favor preservation of sharp boundaries. In this paper, we used the following

function [?]:

ψ(x) = δ2
[∣∣∣x
δ

∣∣∣− log
(

1 +
∣∣∣x
δ

∣∣∣)] , (5)

which provides smooth solutions for large δ values, however favors piecewise-constant struc-

tures for finite values of δ, thus, allowing either a quadratic or a quasi-linear model to

describe parameter variations. A natural choice for the solution is to use larger δ values

to impose smoothness in the diffraction domain (i.e., d-space) and to use smaller δ for the

spatial domain. A closed form expression for the solution of the optimization problem was

obtained using the optimization transfer principle [?].
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2.4 Image analysis

After the diffraction data are fully reconstructed, an identification procedure is applied

along the radial axis to determine individual crystalline phases. Typically, a region-of-

interest (ROI) analysis by summing the values along a given azimuthal range is sufficient

to localize known phases. The following expression describes the process:

xKi =
1

∆r

rf∑
j=rs

xij −
1

2(e+ 1)

 rs∑
j=rs−e

xij +

rf+e∑
j=rf

xij

 , i = 1, . . . , η (6)

where K is used for indexing the phases, xi is the reconstructed scalar value of a given pixel,

rs and rf are the starting and ending radii of a given ROI, with ∆r as the corresponding

difference. Similar to the background subtraction in the preprocessing phase, the second

term in the brackets is the contribution from a slowly changing background, and e is used to

determine the number of boundary pixels on each side of the radial image. The final phase

reconstructions associated with various ROIs can be constructed by forming an image by

assembling the xi values in a 2D image matrix in spatial cross-section of the specimen.

3 Results

We initially performed radial integrations in the vertical and horizontal directions on image

data to obtain individual 1D diffraction patterns for every beam scan position (as previ-

ously described in Figure ??). We then removed the background from diffraction data using

equation (??) with e = 3. This provided a 3D projection data (2D for the spatial dimen-

sions, and 1D for the d-space) as input to the reconstruction algorithm. The voxel sizes

for the corresponding input data were 200 µm and 5 millidegrees in spatial and diffraction

dimensions, respectively. MAP reconstructions are obtained after 200 iterations, and the

results are presented in Figure ??. The resolutions of model and data parameters were
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Figure 4: The image on the left corresponds to the reconstruction of the cross-section at
2θ = 3.59 degrees. The plots on the right are the reconstructed diffraction patterns at a
particular voxel pointed with the red arrow on the left image. The reconstructed Bragg
peaks for hkl = 002, 004, and 222 are highlighted with arrows on the plots.

Figure 5: Demonstration of the effect of algorithm parameters (i.e., β and δ ) on recon-
structed images after 200 iterations.
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Figure 6: Comparison of MAP reconstruction with filtered back-projection for different
undersampling ratios.

93× 1200× 110 [projections× d− spacings× raster− locations] and 155× 155× 1200, re-

spectively. The cross-section image corresponds to the reconstruction at 2θ = 3.59 degrees

on vertical axis. The red and blue curves respectively corresponds to the reconstructed

vertical and horizontal diffraction patterns at a particular voxel within the specimen high-

lighted with red arrow. The plots clearly demonstrate the differences between diffraction

patterns along vertical (A) and horizontal (B) directions, particularly at the Bragg peaks

of hkl = 002, 004, and 222. Figure ?? shows the effect of algorithm parameters (i.e., β

and δ) on reconstructed images. Larger δ values leads to smoother images, whereas using

smaller δ values provides sharp and clear images. With increased regularization, i.e., for

larger β values, the corresponding effect is amplified. Figure ?? shows the comparison of

MAP estimation with the conventionally used filtered back-projection (FBP) method for

different undersampling or data compression ratios. We used the regridding algorithm for

FBP implementation, where the interpolations are carried out in the Fourier domain rather

than in spatial domain [?]. Streaking artifacts are clearly visible in images obtained with
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Figure 7: Reconstructed crystallographic phases for hkl = 002, 004, and 222 from the
integrated areas of the associated Bragg peaks. The top and bottom rows correspond to the
phases obtained by integrating the corresponding Bragg peaks within the reconstructions
for the vertical and horizontal diffraction directions. The external cortex is present on
opposite sides of the specimen and is where muscles attach. The interior of the specimen
contains trabeculae which brace the cortex. The cortical and trabecular bone experience
very different loading states in vivo and are expected to possess very different carbonated
hydroxyapatite (cAp) preferred orientations.

FBP, even when using the complete dataset with 93 projections. MAP reconstruction re-

moved these artifacts, while preserving a remarkable image sharpness. Reducing data sizes

by 2 and 4 times did not produce significant quality degradation in MAP reconstruction,

and maintained good image quality even with data having as low as 24 projections. Fig-

ure ?? shows the crystallographic phases for hkl = 002, 004, and 222 that were obtained by

integrating the corresponding Bragg peaks according to equation ??. The external cortex

is present on opposite sides of the specimen and is where muscles attach. The interior of

the specimen contains trabeculae which brace the cortex. The cortical and trabecular bone

experience very different loading states in vivo and are expected to possess very different

carbonated hydroxyapatite (cAp) preferred orientations, i.e., hkl = 002, 222.
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4 Discussions

Absorption-based reconstructions are widely used in bone studies and have added greatly to

understanding of degraded bone structures in maladies as diverse as osteoporosis and oste-

olytic lesions in bone metastases. As discussed above, XDT of bone offers information very

different from that of absorption tomography, not just where the bone mass is present but

how that mineral is organized. Preferred orientation of mineral (nanoplatelets of carbonated

hydroxyapatite, cAp) within bone, for example, greatly affects functionality and is an im-

portant input for numerical models. One could section the specimen and quantify mineral

orientation vs. position via a raster scan, but that would not allow repeated non-invasive

interrogation of the sample as it was loaded. The specimen is of interest from a biomin-

eralization standpoint, as it exhibits considerable heterogeneity including crystallographic

texture, but also from the perspective of developing XDT.

On challenge in inverse modeling of X-ray tomographic data is that the samples may

come in various shapes, features, and properties. This necessitates having a wider range

of priors, or constraints, that must individually be set according to the sample type for

optimal results. The proposed MAP approach for X-ray tomography allows the necessary

flexibility for defining priors on general model properties like smoothness, edginess, non-

negativity, etc., and also the inclusion of other non-trivial prior distributions by training to

further reveal the subtle local statistics about the sample (e.g. porosity, crack propagation,

fluid diffusion, etc.). Currently, we are exploring ways for classifying high-dimensional X-

ray datasets and samples, not only for the case of XDT, but also for other tomography

techniques like X-ray fluorescence tomography [?], and time-resolved micro-CT [?].

Smart tomographic systems with integrated software (i.e. reconstruction algorithm) and

data acquisition hardware are of particular interest, which allows for optimizing experiments

while data is being collected. XDT is particularly suitable for such in situ and in transit

data analysis, because the data acquisition is typically slow due to the raster scanning of the
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sample with a pencil beam. An integrated approach is when MAP iterations are launched

using a subset of data while data is being collected, and advancing iterations with newly

added data will progressively reduce the uncertainty of the reconstructions. This kind of

combined data acquisition and analysis allows many new possibilities for optimal design of

experiments, and improving the efficiency of experiments.

5 Conclusions

In this paper, we introduced a MAP approach for X-ray diffraction tomography to perform

3D reconstruction of crystallographic phases and orientations of polycrystalline materials.

This multidimensional inversion approach allows provides the capability to yield the full

diffraction spectrum for each spatial voxel in the sample, and avoids conventional recon-

struction artifacts. We tested the reconstruction method with experimental diffraction

data acquired from a bone sample. The preliminary results show significant improvement

on reduction of streaking artifacts, and robustness to noise and undersampling than the

conventional analytical inversion approaches.
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