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Abstract: A penalized maximum-likelihood estimation is proposed
to perform hyperspectral (Spatio-spectral) image reconstruction
for X-ray fluorescence tomography. The approach minimizes a
Poisson-based negative log-likelihood of the observed photon counts,
and uses a penalty term that has the effect of encouraging local
continuity of model parameter estimates in both spatial and spectral
dimensions simultaneously. The performance of the reconstruction
method is demonstrated with experimental data acquired from a seed
of arabidopsis thaliana collected at the 13-ID-E microprobe beamline
at the Advanced Photon Source. The resulting element distribution
estimates with the proposed approach show significantly better
reconstruction quality than the conventional analytical inversion
approaches, and allows for a high data compression factor which
can reduce data acquisition times remarkably. In particular, this
technique provides the capability to tomographically reconstruct
full energy dispersive spectra without compromising reconstruction
artifacts that impact the interpretation of results.
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OCIS codes: (180.2520) Fluorescence microscopy; (110.3010) Image reconstruc-
tion techniques; (100.3190) Inverse problems; (100.6950) Tomographic image pro-
cessing.
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1. Introduction

Hard X-ray fluorescence (XRF) tomography has grown into a powerful non-destructive
technique for probing trace metal distributions in samples without the need for physi-
cal sectioning that may disrupt trace element distributions and sample structure. The
technique is becoming increasingly important in a growing number of research fields
including the life sciences [1, 2, 3], the environmental and earth sciences [4, 5], and the
materials science [6]. A key advantage of XRF imaging is its high sensitivity and speci-
ficity for transition metals such as iron, copper, zinc, or other essential trace elements
[7], its high resolution that allows imaging at scales from few microns [8] down to tens
of nanometers [9, 10], and for biological samples in particular, the capacity for imaging
trace elements in whole, hydrated samples when cryogenic temperatures are used [11].
The results published to date have largely used conventional filtered back-projection
reconstruction methods. While these have yielded very good results, the ultimate qual-
ity and precision of the inversion is dependent on both theoretical and experimental
factors, such as dealing with finite sampling of data, the uncertainties in data, models,
and perhaps more importantly, incorporation of prior knowledge about the nature of
possible problem solutions [12].

In a typical XRF experiment, the specimen is illuminated by a focused monochro-
matic X-ray beam to stimulate emission of fluorescence X-rays from elements whose
binding energies lie below the incident beam energy (see Fig. 1 for the schematic repre-
sentation of XRF data collection). The fluorescent X-rays on the beam trajectory are
considered to be emitted isotropically and the escaped photons are typically measured
using solid state energy-dispersive X-ray detectors placed close to the specimen. Unlike
full-field tomographic methods, the focused nature of the incident beam necessitates
collecting image data through two-dimensional (2D) raster scanning of the sample. In
tomographic mode, an energy-resolved dispersive spectra is acquired for each projection
angle as a function of the horizontal, and in some cases also vertical, translation of the
sample through the X-ray beam. An XRF tomographic experiment therefore consists
of raster scans over multiple projection angles. Traditionally, the energy-dispersive data
collected by each detector pixel is converted into separate elemental maps before per-
forming a 3D tomographic reconstruction. This is usually performed by a curve fitting
approach or a hyperspectral analysis [13, 14, 15]. These approaches, however, often fail
for pixels with low photon counts. In this paper, we propose an alternative approach
by reconstructing the spectrum at each spatial point from the complete spatio-spectral
data, and to perform the 2D elemental mapping on the reconstructed hyperspectral
slices. A detailed illustration of the proposed method is illustrated in Fig. 2. The ad-
vantage of this approach is that we can implement reconstruction algorithms imposing
additional prior knowledge on the third, in this case energy, axis.

To date, analytical inversion methods such as the filtered back projection (FBP)
[16], or the regridding algorithm [17] have been most often used for the tomographic
reconstruction of elemental distributions. A drawback of these methods is that the
reconstructions often suffer from artifacts due to limited acquisition angles and poor
signal-to-noise ratios, as is often the case of XRF [18]. Statistical approaches, on the
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Fig. 1. A schematic representation of a typical XRF data collection system. The
sample is illuminated by a focused monochromatic X-ray beam to stimulate emis-
sion of fluorescence X-rays from elements whose binding energies lie below the
incident beam energy. The fluorescent X-rays on beam trajectory are considered
to be emitted isotropically and the escaped photons are typically measured using
solid state energy-resolving X-ray detector placed close to the specimen.

other hand, not only allow for accurate modeling of the underlying physics of photon
transport, and the corresponding photon detection statistics, but also allow regulariza-
tion of the problem when the data is incomplete. Thus, they provide a versatile tool for
dealing with low-photon counts and non-ideal data collection geometries [19, 20, 21].
In this paper, we present a general formalism of reconstructing hyperspectral images
from the full spatiospectral XRM dataset. With this approach, rather than maximizing
the data likelihood, Bayes’ theorem is used to maximize the posterior density which in-
cludes prior terms that enforce desired (e.g. smoothness, sharpness) and/or certain (e.g.
non-negativity) properties of the solution [22]. This approach leads to objective func-
tions that combine data misfit and prior terms, which can be optimized using various
iterative [23] and global search methods [24]. In this paper, we focused on the feasibility
of the hyperspectral inverse model and ignored self-absorption and scattering effects
[25, 26]. We present the performance of the reconstruction method with experimental
data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe
beamline at the Advanced Photon Source.

2. Methods
2.1.  Mathematical formulation of the problem

We cast the problem as a multidimensional inverse problem of reconstructing the full
energy dispersive spectra for each voxel in the sample from measured data. We define
xg € RV as the virtual spectra per voxel, and yg € R¥ as the spectrally resolved data.
The corresponding problem is modeled as a discrete optimization problem in the form
of:
LE :arg?lgé{g(anyE)_ﬁ%(xE)}v (1)
EZ

where the objective function consists of the Poisson log-likelihood term £(xg,y), and
a penalty term Z(xg). The problem formulated in this way is commonly interpreted
as a penalized maximum likelihood (PML) estimator [27], and is closely related with
the maximum a posteriori estimator in Bayesian statistics [28]. This approach allows
us to separately enforce regularizations of solutions in both the spatial and the spectral
dimensions. A Poisson model is assumed to deal with low photon counts of XRF, and
Z(xg) is used to regularize roughness in solution domain. The scalar B controls the
amount of applied regularization, and is selected heuristically (typically from a range
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Fig. 2. Schematic representations of the traditional and the proposed joint XFM
elemental reconstruction approaches. The drawing on the left illustrates the tra-
ditional XFM data analysis, where each 1D energy-dispersive pixel data is con-
verted into individual elemental maps (1) before performing a 3D tomographic
reconstruction (2). The drawing on the right depicts a joint approach that uses
the complete spatio-spectral data to perform reconstruction in a single step. In
this way, the variations in both spatial (3) and energy (4) dimensions can be
regularized in the reconstruction domain simultaneously, which in turn leads to
a significantly reduced reconstruction uncertainty, and better interpretation of
results.

of 1 to 100) so it provides the desired image. The penalty term follows in the general
form of a Gibbs prior [29] of,

Rxe) =YY wijwlxei—xe ), (2)

i jev

where V represents a set of voxels in a neighborhood of the ith voxel. For instance, in a
two-dimensional (2D) space, it corresponds to the eight neighboring voxels in the spatial
domain, and two neighboring voxels in the spectral domain (see Fig. 3 for details). The
constants w;; are nonnegative weights that satisfy w;j=wj; for all i and j, and y is a
user-defined function to regulate the problem depending on the local statistics of model
parameters. The weights are set inversely proportional to the distance between the
neighboring voxels in a single dimension. For y, we used the function [30] of,

v = 5] w1+ 2] ®

which provides smooth solutions for large & values, while favoring clustering or
piecewise-constant solutions, for finite values of 6. This allows either a quadratic or
a pseudo-linear model to describe parameter variations in their respective domains. A
natural choice for the XRF inversion is to use larger & values to impose smoothness in
the spectral domain, and to use smaller é for the spatial domain. A closed form expres-
sion for the solution of the optimization problem was obtained using the optimization
transfer principle [31] (see, Appendix for details).

2.2.  Experimental data

The experimental dataset was collected at the GSECARS X-ray microprobe beamline,
13-ID-E, at the Advanced Photon Source, at Argonne National Laboratory. A single
350 um diameter seed of arabidopsis thaliana was glued to a 100 um diameter quartz
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Fig. 3. A three-dimensional ”data cube” (with 2D spatial and 1D spectral vari-
ations of model parameters), and the interactions among neighboring voxels in
spatial and spectral dimensions are illustrated at the top. The regularization func-
tion for various & values are plotted at the bottom.

fiber for analysis, mounted hanging down vertically from the rotational stage above the
sample. An incident beam energy of 12 keV from a Si(111) double crystal monochroma-
tor was focused to about 2 x2 pum with reflective rhodium-coated silicon mirrors in a
Kirkpatrick-Baez geometry. A four-element silicon-drift diode detector array was used
(Hitachi ME-4), coupled to a high-speed digital spectrometer system (XIA XMap), to
measure the X-ray fluorescence signal. To collect the X-ray fluorescence sinogram (i.e.
stack of one-dimensional projections), the seed was rotated in the focused beam through
363 degrees at an angular speed of 33.333 degrees per second, saving spectra accumu-
lated through 0.5 degrees every 15 milliseconds. After each full rotation, the seed was
stepped horizontally across the beam by 1 um, and then rotated 363 in the opposite di-
rection, generating sinograms consisting of 2048 energy bins, 727 angles, 501 horizontal
steps, and 4 detector elements. The data were stored in HDF5 format [32].

2.3.  Computational details

The proposed reconstruction algorithm is implemented on a high-performance data-
intensive computing middleware [33] and performed image reconstruction at Argonne
Leadership Computing Facility. Specifically, we ran our experiments on Mira, a 10-
petaflops IBM Blue Gene/Q system. We used up to 896 nodes where each node consists
of 16 physical cores (14336 cores in total) and 16 GiB memory. The running time of the
total hyperspectral reconstruction takes about 6.77 seconds for 1 sPML iterations.

3. Results

8.1.  Hyperspectral reconstruction results

The energy spectra were reconstructed using both the filtered-backprojection (FBP),
and the spatio-spectral PML (sPML) method, and the corresponding results are pre-
sented in Fig. 4. The resolutions of the dataset were 1 um and 15 €V, in spatial and
energy dimensions, respectively. For the sSPML reconstruction, § was selected as 0.01
for the spatial dimensions. The penalty term with this set of parameters is expected
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Fig. 4. The absolute values of the reconstructed energy spectrum (in an arbitrary
location inside the sample) using FBP (blue), absolute value of FBP (green) and
sPML (red) are plotted on the top. The corresponding overlaid elemental maps of
Mn, Fe, and Zn are shown on the bottom. The size of the seed is about 250 um.

to favor piecewise-constant solutions in the spatial coordinates, but still enforces some
smoothness when the differences between neighboring voxels fall below a certain thresh-
old, thus helping to further regulate the measurement noise and outliers. A larger & of
0.1 was used to impose further smoothing on the reconstructed spectra. The locally ob-
tained spectrum with sPML after 80 iterations is remarkably smooth compared to the
one produced by FBP, which renders an accurate local elemental analysis. The sPML
approach preserves many elemental fingerprints in the reconstructed spectrum other-
wise are masked by the noise with FBP. The smaller values (< 10~!) are particularly
hard to resolve at the pixel level due to the streaking artifacts that FBP produces. For
example, the reconstructed values around 2.3 keV by FBP are all negative, and produce
very inaccurate estimations compared to sPML. We used the main Ko, emission lines
of iron (Fe), manganese (Mn) and zinc (Zn) elements to examine the reconstructed
elemental maps. The energy windows for the Fe, Mn and Zn emissions were initially
determined as 5.71 —6.08 keV, 6.13 — 6.67 keV and 8.49 — 8.82 keV, respectively, and
the corresponding overlaid images were obtained by integrating the highlighted regions
of the spectrum. Streaking artifacts in the FBP reconstruction are visible where some
localized elements are present at high levels of concentration. Such streaking artifacts
propagate through the image reconstruction and degrade image quality, whereas the
sPML is very robust to such streaking artifacts. A detailed comparison of individual
elements is presented in Fig. 5. The corresponding cross-sections of the reconstructions
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Fig. 5. Individual 2D elemental maps of Mn, Fe, and Zn and their cross-section
plots for both FBP and sPML.

are plotted.

3.2.  Effect of angular sampling

In order to reduce the data as well as experimental time, we have analyzed the effect
of angular sampling of projections. The total number of projections for the complete
dataset was 720, taken at 0.5 degree intervals from 0 to 360 degrees. We reduced the
projections to simulate undersampled radial acquisitions with acceleration factors of
2, 4, an 8, that corresponds to 1, 2, and 4 degrees tilt intervals, respectively. The
corresponding effect of undersampling on spatial resolution and stability of images for
the cases of FBP and sPML is presented in Fig. 6. As an example, we presented a slice
reconstruction at Fe-peak energy, which consists of many small details and Fe clusters.
The tiny Fe clusters scattered around the large clusters (observable in the zoomed-in
region) are distinctly resolvable with acceleration factors up-to 4 using sPML, whereas
the aliasing artifacts which are typically enhanced with FBP due to undersampling
suppress subtle details in reconstructed images, even with a small acceleration factor of
2. These artifacts gets worse with increasing acceleration factors for FBP, and makes
the interpretation of results almost impossible. However, sPML is robust to noise and
outliers even with high data compression ratios.

3.8.  Relative error

Relative error (RE) was used to quantify the bias and errors induced by reconstruction
methods. It was calculated as the following relative difference between the estimated
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where e represents the energy dependence. [x;] and [d;] are, respectively the two-
dimensional reconstructed image and the measured sinogram data with spatial indices
represented by i. P is the number of projections. The relative error plot as a function
of energy for different reconstruction methods (with 15 eV energy resolution) are pre-
sented in Fig. 7. The relative error of the proposed sPML algorithm is about 0.002 for
the entire energy range, and is a significant indicator of reliable reconstructions. FBP,
on the other hand, provides a relative error of almost two orders of magnitude higher
than sPML. The main contributing factor for sPML having much better relative error
is that, first, it doesn’t suffer from streaking artifacts as FBP does (mainly due to the
non-negativity constraint); and second, the ability to suppress image noise by using
appropriate regularization.

REEg

(4)

4. Conclusions

In this paper, we introduced a general framework to perform hyperspectral image re-
construction for XRF tomography. This multidimensional inversion approach provides
the capability to tomographically reconstruct the full energy dispersive spectra for each
spatial voxel in the sample, and avoids conventional reconstruction artifacts that im-
pact interpretation of results. It allows for a high data compression factor which can
significantly reduce data acquisition times, and improve beamtime efficiency. We demon-
strated the validity of the method with experimental data acquired from an arabidopsis
seed sample. The estimated element distributions show good data fidelity and better im-
age quality than the conventional analytical inversion approaches, and is robust to noise
and outliers in measurements. The sPML algorithm will be made publicly available as
part of the TomoPy software package [34]. We are currently extending this reconstruc-
tion approach to other multidimensional problems such as time-resolved tomography,
or diffraction tomography.

Appendix

Optimization transfer refers to the methods which replace the original objective func-
tion, like given in expression 1, at each iteration with a surrogate function, which when
maximized, is guaranteed to also increase the value of the original objective function.
By choosing the surrogate functions appropriately, reductions in computation time and
improvements in convergence can be realized. Here we only give the update equations
of the algorithm, but for details one can refer to [31].

(n) 2(n) (n) =(n)
wery G G —8ETF;

X = AF ()
J
W _ oy, di
E] = ;p]kxj [Px(")]i (6)
FP = 28 Y wur —x) (7)

keN;

G = Ypu—2B ¥ wirlal” — ")+ x) (8)
J

keN;



where y(x) := y(x)/x (note that w(x) is given in equation 3). It is implicitly assumed
that F(k) =0 if B =0. When B =0, the iteration is equivalent to the ML expectation-
maximization (ML-EM) solution.

Acknowledgments

We thank Amanda Socha and Tracy Punshon (Dartmouth College) for sharing the ara-
bidopsis thaliana data used in this paper. We also thank Stefan Vogt, Chris Jacobsen,
Eugene Lavely, and Yi-San Lai for fruitful discussions and helpful comments during
the course of the work. This research used resources of the U.S. Department of Energy
(DOE) Office of Science User Facilities operated for the DOE Office of Science by Ar-
gonne National Laboratory under Contract No. DE-AC02-06CH11357. The GSECARS
13-ID-E beamline is supported by the National Science Foundation: Earth Sciences
(EAR-1128799), and Department of Energy: Geosciences (DE-FG02-94ER14466).



