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Abstract. Synchrotron (x-ray) light sources permit investigation of the
structure of matter at extremely small length and time scales. Advances
in detector technologies enable increasingly complex experiments and
more rapid data acquisition. However, analysis of the resulting data
then becomes a bottleneck—preventing near-real-time error detection
or experiment steering. We present here methods that leverage highly
parallel computers to improve the performance of iterative tomographic
image reconstruction applications. We apply these methods to the con-
ventional per-slice parallelization approach and use them to implement
a novel in-slice approach that can use many more processors. To ad-
dress programmability, we implement the introduced methods in high-
performance MapReduce-like computing middleware, which is further
optimized for reconstruction operations. Experiments with four recon-
struction algorithms and two large datasets show that our methods can
scale up to 8K cores on an IBM BG/Q supercomputer with almost per-
fect speedup and can reduce total reconstruction times for large datasets
by more than 95.4% on 32K cores relative to 1K cores. Moreover, the
average reconstruction times are improved from ~2 hours (256 cores) to
~1 minute (32K cores), thus enabling near-real-time use.

1 Introduction

As data volumes increase, research success in a growing number of fields depends
on the ability to analyze the data rapidly. In scientific computing, this situation
is true both for data generated by simulations and instruments. In the context
of scientific instruments, for instance, techniques such as time-resolved micro-
tomography can produce three or more dimensional data at rates of terabytes
per day or more. Moreover, data generation rates are expected to increase with
advances in detector technologies and experimental techniques.

The utility of such techniques is severely limited by the hours required to
analyze the resulting large datasets [3,11]. Scientists often want quasi-instant
feedback so that they can check results and adjust the experimental setup. For
instance, the x-ray tomography systems available at the imaging beamlines of the



Advanced Photon Source (APS, located at Argonne National Laboratory) are
routinely used in materials science applications, where high-resolution and fast
3D imaging are instrumental in extracting valuable information. Quasi-instant
feedback can help identify optimal experimental parameters (beamline condition
and sample environment such as temperature and pressure) and accelerate the
end-to-end scientific process.

In the absence of such quasi-real-time analysis, precious time on many expen-
sive instruments is used less effectively. In this paper, we focus on improving the
efficiency of tomographic image reconstruction, thus enhancing the turnaround
time of scientific workflows. Specifically, we address the following issues: (1) how
to enable efficient and parallel execution of tomographic reconstruction algo-
rithms and (2) how to ease the rapid development of reconstruction codes.

With regard to the first issue, different parallel reconstruction algorithms
have been proposed for multicore machines [1,14,17,23, 24, 26]. Although these
works provide reasonable reconstruction times with small datasets, they typi-
cally have scalability limitations and are not suitable for high-resolution large
datasets such as those generated at synchrotron x-ray light sources (e.g., APS).
Another effort in the same direction is to use accelerators such as GPUs [5,16,19].
Accelerators can provide high computational througput and enable the use of
compute-intensive algorithms that can operate on fewer projections (i.e., smaller
datasets) [12,20,21]. However, these devices can accommodate only a small frac-
tion of data and require repeated communication between host and device, which
can limit the performance.

With regard to the second issue, we note that reconstruction algorithms
might need to be developed according to different properties, including exper-
imental setup and data acquisition; point of interests in reconstruction object;
and total analysis or reconstruction time. These requirements result in various
application-specific algorithms that are difficult to modify and maintain [8,9,18].
There are several frameworks that provide workflows and algorithms for tomo-
graphic reconstruction [7,22]; however, these typically provide limited support for
easy implementation of reconstruction algorithms and parallelization of compu-
tation. The data-intensive computing community has also developed frameworks,
such as Hadoop [2] and Spark [25], that ease the implementation of parallel al-
gorithms. Although these frameworks show good scalability, they are not always
suited for science applications that run on high-end clusters and supercomputers.

To address these issues, we make the following contributions. First, we intro-
duce two parallelization techniques, per-slice and in-slice, for tomographic
reconstruction algorithms. Our in-slice technique provides fine-grained high-
performance parallelism using replicated reconstruction objects, which signifi-
cantly improves the conventional per-slice approach. Second, we extend and
optimize a MapReduce-like framework, MATE [13], to help implement these par-
allel methods efficiently. Third, we extensively evaluate the proposed methods
and middleware-based implementations (for different reconstruction algorithms
and real-world datasets). Our experimental results show that our middleware
can scale almost linearly up to 8K cores and can achieve execution times on
32K cores that are > 95.4% less than those on 1K cores. Moreover, the average
reconstruction times are improved from ~2 hours (256 cores) to ~1 minute (32K
cores). To the best of our knowledge, this is the first study that examines the
parallelization of tomographic reconstruction algorithms at this scale.
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Fig. 1. Per-slice parallelization

2 Parallelization of Image Analysis and Reconstruction

In this section, we first discuss the organization of tomography datasets and re-
construction approach; then we present two parallelization techniques, per-slice
and in-slice, for tomographic image reconstruction.

2.1 Tomography Datasets and Reconstruction

A tomography dataset is a set of 2D projections collected from different direc-
tions (f) of a target sample. Each projection is a 2D array of floating-point
numbers, each representing the line integrals of a ray, namely, a ray-sum. There-
fore, a complete dataset is a 3D array in which the dimensions are projections,
rows, and columns, respectively.

The tomographic reconstruction algorithms that we consider in this paper
proceed in an iterative manner. At each iteration, rays are simulated according to
the ray-sum values and reconstructed data from the previous iteration. Since rays
in rows corresponding to different projections do not intersect, the reconstruction
of individual rows (also referred to as slices) can proceed in parallel. We further
discuss the tomographic image reconstruction and parallelization techniques in
the following sections.

2.2 Per-Slice Parallel Reconstruction

Figure 1(a) illustrates the per-slice parallelization technique. We name the slices
in the tomography dataset IS = {isg,is1,...,98,}, and denote the reconstructed
object generated at the ith iteration as ro;. Then, we can define a function R
that, for iteration ¢ + 1, determines ro;+; = R(IS,r0;) by computing each of
n output slices os; from the corresponding input slice is; and from ro;, and
then setting ro;+1 = {0sg, 081, ..., 08, }. Since there are no dependencies between
slices, each slice can be processed independently.

Figure 1(b) shows a sample reconstruction operation. Each arrow represents
a ray-sum value, with the direction of the arrow indicating the ray’s 6. Simulat-
ing the propagation of the colored rays using the R function leads to the updates
on the dotted cells in the output slice. Note that only the updates of the colored
rays are shown in the figure. Typically, for each iteration, all rays in the projec-
tion (input) dataset are simulated for rapid convergence to the real 3D image.
Although there are no dependencies between slices, different rays within a slice
can update the same cell in the output slice, a situation that results in a race
condition and limits the scalability of the per-slice parallelization technique.
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Fig. 2. In-slice parallelization

2.3 In-Slice Parallel Reconstruction

The per-slice technique can use only as much parallelism as there are slices in a
dataset. Thus, for example, a dataset with 2,048 slices cannot be reconstructed
with more than 2,048 parallel units (e.g. threads) and hence can take days to
finish, depending on dataset size, reconstruction algorithm, and computational
resources.

Our in-slice parallelization technique addresses this limitation by performing
parallel reconstruction for each ray, therefore it significantly decreases the gran-
ularity of parallelism and increases the number of threads that can be applied.
However, two obstacles must be addressed for in-slice parallelism: (1) different
rays in the same slice may update the same cell at the same time (i.e., race
conditions can occur); and (2) threads that operate on the same slice may need
to synchronize in order to compute the correct output slice.

One way to address race conditions is to use mutexes. However, the use of
mutexes can introduce significant overhead considering the many threads that
must perform update operations on the same slice. An alternative approach is to
replicate the assigned output slices (reconstruction objects) for each thread so
that reconstruction operations can proceed independently. This approach avoids
race conditions, and it achieves better performance than using (un)locks on
individual reconstruction objects. Figure 2(a) illustrates how replication can be
used for parallel reconstruction. First, each row in an input slice is assigned
to a thread. Then, each thread simulates its assigned rays on the replicated
reconstruction object. For example, in the figure, 75 simulates rays ps . and
updates results on its own replica. Similarly, other threads perform the same
operation on their own replicas.

We address the second issue by grouping and synchronizing threads according
to their assigned slices. For example, Fig. 2(b) shows how replicas (PR, PR;
and PRy) from threads (Tp, Ty and T3) are combined in order to generate the
correct reconstructed slice. The combination function used may vary depending
on the reconstruction algorithm.

In-slice parallelization uses both replicas and combination operations to en-
able fine-grained parallelism and large-scale 3D reconstruction of tomographic
images. However, these techniques require additional resources and introduce
overheads that are not required in per-slice parallelization.

3 Our MapReduce-like Middleware

We next describe the processing structure of our middleware and the methods
used to port the aforementioned parallelization techniques into this middleware.

Our middleware is built on top of MATE [13], a MapReduce-like middleware
that supports reduction-based processing structure [4]. The MATE middleware



has been specialized to have a reconstruction object similar to the reduction ob-
ject. The processing structure of the middleware consists of three main phases:
local reconstruction (specialization of local reduction), partial combination, and
global combination. In this section, we first explain how data management and
distribution are performed in our system. Then, we provide details about the pro-
cessing structure of our middleware. Finally, we introduce ordered-subsetting
feature and its implementation.

Data Organization and Distribution: Typically, tomography datasets are
stored by using a scientific data format such as HDF5 [6]. Before beginning re-
construction, our middleware reads metadata information from the input dataset
and allocates the resources required for the output dataset, setting the first di-
mension of the 3D reconstruction object to the number of slices and the other
two dimensions to the number of columns. For instance, if the input dataset’s
dimensions are 360x2048x1024 (where 360 is the number of projections and 2048
and 1024 are the number of slices and columns, respectively), then the recon-
struction object’s dimensions are 2048x1024x1024.

Since the parallelization of reconstruction methods is based on slices, the
data distribution partitions the input dataset along its second dimension and
the 3D reconstruction object along its first dimension. For example, if the sys-
tem has 128 processes, then the middleware partitions the input dataset and
the reconstruction object into subsets of size 360x16x1024 and 16x1024x1024,
respectively, where in each case 16=2048/128. It then assigns each portion of
the input data and reconstruction object to a process. If there are more recon-
struction processes/threads than there are slices, then portions of the same slice
can be distributed to multiple processes.

Reconstruction Object: With per-slice parallelization, our middleware creates
a single output object (portion of reconstruction object) in each process and lets
all the threads update it. Since each slice is an atomic unit in the per-slice
parallelization, threads can perform direct updates.

With in-slice parallelization, however, direct update on output object is not
a correct operation. Recall from Section 2.3 that each slice may be shared among
several threads, thus introducing the potential for race conditions. Our middle-
ware eliminates these race conditions by creating a replica of the output object
for each thread, which we refer to as ReconRep in Fig. 3(a). For example, as-
sume that the user sets the number of processes per node to 1 and the number
of threads per process to 32. In the aforementioned example, our middleware
will allocate a replica of the corresponding input slices (16x1024x1024) for each
thread. Therefore, each thread can perform reconstruction on its own replica.
This use of replicas provides the greatest reconstruction parallelization among
the threads, but does require additional synchronization. We quantify the costs
associated with this overhead in our experiments.

Local Reconstruction Phase: Local reconstruction corresponds to the map-
ping phase of the MapReduce processing structure. The user implements the
reconstruction algorithms in the local reconstruction function (LocalRecon in
Fig. 3(a)); our middleware applies this function to each assigned data chunk.
Each data chunk can be a set of slices (for per-slice parallelization) or a subset
of rays in a slice (for in-slice parallelization).
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Fig. 3. (a) Execution flow of our middleware; (b) pseudocode for in-slice parallelization

The local reconstruction function performs update operations using a 3-tuple,
(slicelD, offset, value), where sliceID refers to the slice, offset is the data point
on the slice, and value is the computed value. The usage of a 3-tuple is similar
to (key, value) pairs in MapReduce, where key corresponds to sliceID and offset.
Unlike MapReduce, however, the generated 3-tuple is being reduced /updated on
replicas right after its generation.

Partial Combination Phase: After all the rays in the assigned data chunks
are processed, the threads that are working on the same slices synchronize and
combine their replicas by using a user-defined function (PartialCombination()
in Fig. 3(a)). Although this phase resembles the reduce phase in the MapReduce
processing structure, subtle yet important differences exist. First, there is no
barrier between the local reconstruction and partial reconstruction phases; thus,
idle time occurs only for the threads that need to synchronize. Second, the use
of replicas eliminates the need for shuffling, grouping, and sorting operations
used in MapReduce. This optimization has been shown to increase application
performance significantly [13]. The partial combination is required only for the
in-slice technique, since the per-slice technique does not need to use replicas.

Global Combination Phase: At the end of the partial combination phase,
processes generate the slices of the 3D image. If the reconstruction algorithm
uses neighboring slices, then the processes must exchange border slices. During
the global combination phase, processes exchange these slices and then continue
next iteration. This phase is required only for reconstruction algorithms that
utilize neighboring slices.

Once all the iterations are completed, the final reconstruction object ( Recon/i]
in Fig. 3(a)) is generated. Our middleware, then, writes this reconstruction ob-
ject using parallel HDF5.

Figure 3(b) gives pseudocode for the in-slice parallelization technique. Our
middleware also supports ordered-subsetting, which lets users perform re-
construction using a subset of the rays in the assigned projection dataset. For
example, assume that PS;s, = {pso,ps1,...,PSm} are the projection rows in
slice is;. If the GetOrderedRaySubset function is called with is = 0, ¢ = 0 and
dist = 2 values, it sets IR = {pso, pS2, pS4, .., PSm }. These projections’ rows are
then used for reconstruction. Here dist is used for setting the distances between
projections, and 7 is the current iteration. The iteration number determines the



beginning index of the projection; that is, if ¢ = 1 and dist = 2, then projections
IR = {ps1,pss,..,pSm—1} are processed.

While only a subset of the rays is processed in each iteration, the middleware
varies the beginning index of the projection so that all rays are eventually pro-
cessed. Ordered subsetting converges more rapidly to the 3D image than does the
sequential approach. After the target rays are determined, they are iteratively
reconstructed. Again, notice that the generated values are reduced in ReconRep
right after the LocalRecon function. Once all assigned rays are processed, Recon-
Reps from different threads are combined with PartialCombination. The Recon
object, then, is updated with GlobalCombine.

4 Experimental Results

We evaluated our middleware’s performance and scalability using four iterative
reconstruction algorithms and two real world datasets.

The reconstruction algorithms are ported from TomoPy [10], a widely used
tomographic data processing and image reconstruction library. Specifically, we
used maximum likelihood expectation maximization (MLEM), simultaneous itera-
tive reconstruction technique (SIRT), penalized maximum likelihood (PML), and
accelerated PML reconstruction (APMLR). Among these algorithms, APMLR re-
quires adjacent slices, whereas MLEM, SIRT, and PML can perform reconstruction
using data points on the same slice (i.e., neighboring slices are not needed).

To evaluate our framework, we used two datasets, Seed and Hornby, from two
different APS beamlines. Seed is acquired from a seed of arabidopsis thaliana, a
flowering plant [9]. It consists of 720 projections, each with 2048 rows and 501
columuns (i.e., 720x2048x501 single-precision floating-point numbers). Hornby is
an x-ray microtomography data from a shale sample [15]. It includes 360 pro-
jections, each with 2,048 rows and 1,024 columns. The reconstructed 3D images
from Seed and Hornby have dimensions 2048x501x501 and 2048x1024x1024,
respectively.

We conducted our experiments on Mira, a 10-petaflops IBM Blue Gene/Q
(BG/Q) supercomputer at the Argonne Leadership Computing Facility. Mira is
equipped with 49,125 nodes, each with 16 cores (1600 MHz PowerPC A2) and
16 GB memory. The nodes have access to a GPFS file system that provides 24
PB of capacity and 240 GB/sec bandwidth. Moreover, the nodes are connected
with a 5D torus proprietary network. °

4.1 Multithreaded Performance

We first evaluated the performance of our middleware when using different num-
bers of threads on a single node. In these experiments, we processed 64 slices (i.e.,
rows) of the Seed dataset using the MLEM and APMLR reconstruction algorithms.

The MLEM column in Fig. 4 shows the single-iteration reconstruction time (y-
axis) for varying numbers of threads (x-axis). We observe the best performance
with 32 threads, achieving a speedup of 18.76 relative to 1 thread.

® For more information, see http://www.alcf.anl.gov/mira
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the best performance, achieving 18.38
speedup. We observe, however, that the execution time of APMLR is slightly longer
than that of MLEM. Although MLEM and APMLR use similar library functions from
our middleware, APMLR performs additional computation and communication op-
erations because of the use of adjacent slices, which introduces overhead during
runtime.
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4.2 Scalability

We next present the distributed-memory performance of our middleware. For
these experiments, we used up to 2K nodes (i.e., 32K cores) and reconstructed
both the Seed and Hornby datasets. We set the total number of iterations to 10.
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Fig. 5. Speedups achieved (y-axis) when reconstructing the Seed dataset on up to 32K
cores (x-axis). Speedups are calculated with 256-core per-slice configurations.

Figure 5 shows the speedups achieved for the MLEM and PML algorithms on
the Seed dataset, when using the per-slice and in-slice parallelization tech-
niques. For these experiments, we used the 256-core per-slice timings as the
baseline for speedup calculations, and set the number of threads per core to 2,
i.e., 32 threads per node.

Notice that the per-slice technique has results for only up to 2K cores,
while the in-slice technique has results for up to 32K cores. This difference is
because the per-slice technique can create at most one thread per slice and
the Seed dataset has 2K slices. Looking more closely, we see that per-slice



performs similarly to in-slice on up to 1K cores but less well on 2K cores. We
attribute this relative decline to the maximum 2K threads that can be created
by per-slice for Seed. Thus, per-slice has 16 threads per BG/Q node when
running on 2K cores—Iless than the 32 threads that we showed in Section 4.1 to
provide the best CPU utilization.

If we compare the 256- and 1K-core timings of per-slice, we see speedups
of 3.99 and 3.98 for MLEM and PML, respectively. Since these speedups are close to
the ideal (4x), we conclude that our middleware introduces negligible scalability
overhead for these compute-intensive applications. The speedup for 2K-core con-
figuration is 5.18 for both MLEM and PML, relative to the 256-core configuration.
The fact that the in-slice technique can scale to more than 2K cores allows it
to achieve far better reconstruction performance than does per-slice: at least
15.6x faster (on 32K cores) than per-slice (on 2K cores) for both MLEM and
PML.

Looking more closely, we see that in-slice achieves almost linear speedup
on up to 8K cores. Beyond 8K cores, however, the rate of speedup decreases.
On 32K cores, for example, we observe a speedup of 85.6 for MLEM and 91.9
for PML application relative to the times taken on 256 cores. We attribute these
less-than-perfect speedups to the short execution times (~1 min.) with many
threads; the time taken by I/0; and the serial computation.

A closer look at the data shows that on up to 1K cores (in which both tech-
niques utilize 32 threads per node), per-slice performs slightly better than
in-slice. We attribute this difference to the need for in-slice to (1) synchro-
nize threads that operate on the same slice at the end of each iteration and (2)
perform additional computation for correct calculation of intermediate recon-
struction objects (i.e., slices of 3D images). However, these overheads are small,
ranging between 2.1% and 2.5%.

In Fig. 6, we show the execu-
tion times for the same applications,
MLEM and PML, on the Hornby dataset,
looking only at the more scalable
in-slice technique in this case. For
this set of experiments, we scaled the
number of cores from 1K to 32K. The |10
scalability results show a similar trend 500
to that seen in the previous experi- 0
ments: an almost linear speedup up
to 8K cores for both MLEM and PML, in-  Fjg. 6. Reconstruction times (in secs.) of
creasing more slowly subsequently be-  MLEM and PML with the Hornby dataset using
cause of increased I/0, synchroniza- up to 32K cores.
tion, and communication costs. The
execution times on 32K vs. 1K cores show speedups of 24.22 and 25.5 for MLEM
and PML, respectively.

Since Hornby is larger and thus computationally more demanding than Seed,
we achieve better scalability than with the former dataset. Specifically, the
speedups observed on 32K relative to 1K cores of MLEM and PML for Seed are
21.94 and 23.51, respectively: 7.8-9.5% less than those achieved with Hornby.

In Fig. 7, we show the performance achieved when we repeat the same ex-
periments with the APMLR reconstruction algorithm. The execution times (left
y-axis) and speedups (right y-axis) are presented in Fig. 7(a). Similar to the pre-
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Fig. 7. Performance achieved by the APMLR algorithm for the Hornby dataset, using
up to 32K cores.

vious experiments, speedups are close to linear for up to 8K cores. Considering
32K vs. 1K cores, the speedup of APMLR is 24.77, which decreases the execution
time from over 1 hour to less than 2.5 minutes. Note that the 1 hour execution
time is with 1K cores; thus, the estimated execution time of the same application
on a single BG/Q node (i.e., 16 cores) is more than 67 hours.

In Fig. 7(b), we show the percentage times spent in five different activities
for the experiments of Fig. 7(a): (1) Reconstruction time, encompassing recon-
struction and update operations on replicas; (2) Intermediate computation, i.e.,
Inter. Computation, in which intermediate matrices are calculated for recon-
struction; (3) Combination, which is the sum of local and global combinations;
(4) Communication, in which neighbors are updated; and (5) I/0 time, in which
data read and write operations are performed.

We see that Reconstruction dominates overall execution time for all core
counts. The fraction of time spent in I/0 increases as the number of cores grows;
this result is not surprising since increasing the number of cores decreases per-
core computation time and increases synchronization costs. Communication also
does not scale well, since it requires constant time for updating neighbors. More-
over, the fraction of time spent in Inter. Computation and Combination re-
mains roughly the same with increasing number of cores; the reason is that since
these phases process data structures which are tightly coupled with the size of
reconstruction objects, they show good parallelization performance.

4.3 Ordered-Subsetting Performance

In our next experiments, we evalu-

1000
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Fig. 8 shows our results. We see
that execution times improve with
increasing distance configurations for

Fig. 8. Reconstruction times (in secs) of
APMLR and SIRT wusing different dis-
tances. (Hornby dataset; # cores=4K).



both APMLR and SIRT algorithms. Since the amount of processed data directly
affects the overall execution times, the partial iteration decreases the reconstruc-
tion times. For example, if we set d = 2, then each thread processes every other
projection in an assigned slice. This effectively decreases the amount of processed
input data by half (for each iteration). We note, however, that the reconstruc-
tion is performed on the same (full) output data; that is, the computational
complexity of updating the 3D object is still high.

Comparing d = 1 and d = 32, we observe 4.8 and 9.7 speedups for APMLR and
SIRT, respectively. Although the amount of processed data is 1/32 of the original
for d = 32 configuration, update and reconstruction operations on 3D object still
involve significant computation. Moreover, the strided access to the input data
degrades the data locality. These effects are more visible in the case of the APMLR
application, in which reconstruction also requires additional synchronization and
communication.

The main advantage of using ordered-subsetting is the high image quality
that it achieves with only a small number of full iterations. For example, 10
partial iterations with ordered-subsetting (where d = 2) provide better image
quality than do five full iterations without ordered-subsetting for SIRT (normal
execution). Note that 10 partial iterations correspond to 5 full iterations where
d = 2. The ordered-subsetting method is being used extensively to improve
reconstruction times and 3D image quality [3].

5 Conclusion

We have described the design and implementation of parallelization methods for
tomographic reconstruction algorithms on high-performance clusters. We pre-
sented two parallel reconstruction techniques: per-slice and in-slice. The
in-slice technique, which provides fine-grained high-performance parallelism
using replicated reconstruction objects, represents a significant improvement over
the conventional per-slice approach. We integrated the per-slice and in-slice
techniques in a lightweight MapReduce-like middleware and extended the mid-
dleware to make it easy to implement different reconstruction algorithms.

We evaluated the techniques and middleware using four reconstruction al-
gorithms and two large datasets. Our results show that our reconstruction ap-
proaches can achieve close to perfect speedups on up to 8K cores (512 BG/Q
nodes). Moreover, the execution times of the 32K-core configurations (2K BG/Q
nodes) show > 95.4% reduction in execution time relative to a 1K-core configu-
ration. This acceleration enables near-real-time reconstruction of large datasets,
such as those generated at synchrotron x-ray light sources.
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