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Abstract—Purpose-built clusters permeate many of today’s or-
ganizations, providing both large-scale data storage and comput-
ing. Within local clusters, competition for resources complicates
applications with deadlines. However, given the emergence of
the cloud’s pay-as-you-go model, users are increasingly storing
portions of their data remotely and allocating compute nodes on-
demand to meet deadlines. This scenario gives rise to a hybrid
cloud, where data stored across local and cloud resources may
be processed over both environments.

While a hybrid execution environment may be used to meet
time constraints, users must now attend to the costs associated
with data storage, data transfer, and node allocation time on
the cloud. In this paper, we describe a modeling-driven resource
allocation framework to support both time and cost sensitive
execution for data-intensive applications executed in a hybrid
cloud setting. We evaluate our framework using two data-
intensive applications and a number of time and cost constraints.
Our experimental results show that our system is capable of
meeting execution deadlines within a 3.6% margin of error.
Similarly, cost constraints are met within a 1.2% margin of error,
while minimizing the application’s execution time.

I. INTRODUCTION

Over the years, the trend of “Big Data” has prompted
many organizations to acquire in-house cluster and storage
infrastructures to support computing. Because these local
resources are typically shared, the desired amount of com-
putation may not always be available, which frustrates users
with application deadlines. In these situations, the emergence
of cloud computing has been timely. Its ability for users to
immediately demand and obtain remote resources to help
with computing and storage draws much interest from the
computing community.

The cloud’s key features include the pay-as-you-go model
and elasticity. Users can instantly scale resources up or down
according to the demand or the desired response time. This
ability to increase resource consumption comes without the
cost of over-provisioning, i.e., having to purchase and maintain
a larger set of resources than what is needed most of the
time, which is often the case for traditional in-house clusters.
Some recent efforts have specifically focused on exploiting
the elasticity of clouds for different services, including a
transactional data store [6], data-intensive web services [11], a
cache that accelerates data-intensive applications [5], and for
execution of a bag of tasks [15].

In general, cloud elasticity can be exploited in conjunction
with local compute resources to form a hybrid cloud to help
meet time and/or cost constraints. For instance, some users
may prefer to finish a task within a fixed deadline and may

be willing to use more resources on the cloud and thus,
having higher cost. Other users might prefer utilizing some
cloud resources, but also have hard limits on the total cost of
execution. While elasticity can be used to meet time or cost
constraints, it would be desirable to have an automated and
dynamic framework for such resource allocation.

This paper explores resource allocation in the aforemen-
tioned hybrid cloud environment. We describe a model-driven
resource allocation framework to enable time and cost sen-
sitive execution for data-intensive applications executed in a
hybrid cloud setting. Our framework considers the acquisition
of cloud resources to meet either a time or a cost constraint for
a data analysis task, while only a fixed set of local compute
resources is available. Furthermore, we consider the analysis
of data that is split between a local cluster and a cloud
storage. We monitor the data processing and transfer times to
project the expected time and cost for finishing the execution.
As needed, allocation of cloud resources is changed to meet
the specified time or cost constraint. While the framework
is dynamic, it tries to converge to a fixed number of cloud
resources, so as to avoid allocating and deallocating resources
during the entire execution.

We have extensively evaluated our resource allocation
framework using two data-intensive applications executed
with a number of different time and cost considerations.
Our evaluation shows that our system is capable of meeting
execution deadlines within a 3.6% margin of error. Similarly,
cost constraints are met within a 1.2% margin of error, while
minimizing the application’s execution time.

The remainder of this paper is organized as follows. We
introduce the background of this work in the next section. In
Section III, we present our cost and time estimation models, as
well as resource allocation algorithms guided by these models.
A detailed evaluation of our system is performed using two
data-intensive algorithms (KMeans clustering and PageRank).
Our results are shown in Section IV. In Section V, related
works are discussed, followed by our conclusions in Section
VI.

II. DATA-INTENSIVE COMPUTING ON HYBRID CLOUD:
MOTIVATION AND ENABLING MIDDLEWARE

We now describe the situations where processing of data in
a hybrid cloud may be desired. We also describe the needs
of a framework that would support data processing within a
hybrid cloud.

For a data-intensive application, co-locating data and com-
putation on the same resource (e.g., either a cluster or a cloud
environment) would clearly be ideal in terms of performance.
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Fig. 1. Middleware for Data Processing on Hybrid Clouds

However, this is not always possible. Suppose a user wants
to process data that is located in the storage nodes at a
supercomputing center. When the user needs to analyze this
data, compute resources at the supercomputing center may not
be readily available. Rather than submitting a batch job and
waiting for it to be scheduled, the user may prefer to leverage
the on-demand computing resources from a cloud provider. In
this particular scenario, it would not be ideal for the user to
explicitly move and store the data on cloud resources. Instead,
the data should be transparently moved into the cloud for
processing without any effort from the user.

Consider another situation, where a research group has
stored data on local disks. After some time, the research group
may need to add data from new experiments or simulations,
for which space is no longer available locally. In this case,
the new data may be made available on cloud storage, such
as Amazon’s S3 service. Future users of this entire data
set must access it from both locations, which complicates
the application. Thus, development of future data analysis
applications can be greatly simplified if the analysis can be
specified with a familiar Map-Reduce type API, keeping the
details of data location and data movement transparent to the
user.

In our recent work, we have developed a middleware to
facilitate Map-Reduce style processing on data that is stored
across a local resource and a cloud storage resource [2]. The
previous work, however, did not explore dynamic resource
allocation for meeting time and cost constraints.

Figure 1 illustrates the execution paradigm facilitated by
the middleware. The head node is responsible for inter-
cluster communication and schedules jobs to be executed
between clusters. Each cluster is managed by its own master
node, which communicates directly with the head node and
distributes the jobs to its slaves. The actual work is performed
on the slaves, which retrieve and process the data.

Whenever a cluster’s job pool diminishes, its corresponding
master requests jobs from the head node. The master then

assigns a group of jobs to the cluster based on data locality,
e.g., if there are locally available jobs in the cluster, then those
will be assigned first. Once all of the local jobs are processed,
the remote jobs are selected from files which the minimum
number of nodes are processing to reduce contention. Remote
job processing is shown as “job stealing” in the figure. After
all the jobs are processed, the head node enters the global
reduction phase by requesting and combining the locally
reduced data and forming the final result.

The job assignments in our system include the metadata
information of the data chunks. Metadata information of a data
chunk consists of location, offset, and size of each unit data.
When a job is assigned to a slave, it retrieves the data chunk
according to the given metadata information. If the data chunk
is locally available, continuous read operations are performed.
However, if the data chunk needs to be retrieved from a remote
location, i.e. job stealing, multiple retrieval threads are used
to utilize the available bandwidth. The processing of the data
chunk begins at the slaves following data retrieval.

Load balancing is maintained through the slaves’ on-
demand job request scheme. Clearly, the slave nodes that
have higher throughput (e.g., faster compute instances inside
a cloud cluster) are expected to process more jobs. In similar
fashion, a master node also requests a group of jobs from the
head on demand, thus ensuring that the clusters with more
computational throughput would perform more processing.

Given this processing framework [3], [2], we can focus on
the techniques for slave node allocation in the cloud to meet
deadlines and cost constraints. In the next section, we define
our time and cost models, as well as the resource allocation
algorithm which employs these models.

III. RESOURCE ALLOCATION FRAMEWORK

Earlier, we stated that two well-known advantages of cloud
computing are elasticity and the pay-as-you-model. The former
refers to the ability to allocate and deallocate resources as
needed, whereas the latter implies that a cloud user only pays
for the resources it actually consumes. To exploit these aspects
of cloud computing, our middleware includes a sophisticated
and dynamic resource allocation framework.

In our current framework, we consider two different modes
of execution, which are referred to as cost constraint-driven
and time constraint-driven executions. We elaborate on the
objectives associated with each mode below:
Cost Constraint-Driven Execution: Cost is a major consid-
eration while using cloud resources. Thus, even if a user may
simply want to accelerate a data-intensive task through scaling
up in the cloud, the incurred cost may be prohibitive. The user
may therefore be willing to accept a longer completion time
for lowered costs. This would normally imply that a part of
the cloud-resident data will be executed by local resources.
The overall goal for this mode of execution is to minimize the
time of execution while staying below a user-specified cost
constraint.

It should be noted that the trade off between the cost and
time of execution is nontrivial for two reasons. First, in most
cloud environments today, there is a cost associated with
retrieving data for processing outside of the cloud. Second,
the cost is dependent upon not only the number of instances
used, but how long they are used.
Time Constraint-Driven Execution: The elasticity of cloud



resources could be used to meet a time constraint for an appli-
cation, by scaling either vertically (allocating faster nodes) or
horizontally (acquiring more nodes). Either choice would nor-
mally imply a higher cost and would likely involve processing
of some of the local data using cloud resources. The overall
goal of this execution mode is to minimize the cost, while
completing the execution within a user-specified deadline.

A. Detailed Model for Cost and Execution Time
To enable execution with either of the above two modes,

our system uses a comprehensive model of execution time and
cost incurred in the cloud environment. We now present this
model, and show how it can be used for deciding the number
of instances to be allocated.

In our model, we view a data-intensive application as
comprising a number of jobs, or data chunks, to be processed.
As we mentioned in the previous section, the dataset can be
split into independent jobs. We denote the total number of jobs
as j and assume each job has the same amount of data to be
processed, and each job will take the same amount of time on
a node or a given cloud instance type. Because we consider
jobs on two independent resources (local cluster and cloud), j
can be further expressed as j = jlocal + jcloud. We first focus
on how the execution time of an application can be estimated.

To simplify the presentation of our model, we assume
that local compute resources can process both locally and
cloud-resident jobs. Based on this assumption, we can define
the following terms. We define tlpl to be the time for one
local instance to retrieve and process a locally resident job.
Similarly, tcpc is defined as the time for one cloud instance to
retrieve and process a job stored in the cloud. Furthermore, tcpl
refers to the retrieval and processing time of one job in cloud
using one local instance. These values, known only at runtime,
represent the computational characteristics of the application
with respect to local and cloud resource types. We let jstolen

represent the number of jobs that are stolen from the cloud
environment and consumed by the local cluster. nlocal and
ncloud refer to the current number of running instances in
local and cloud clusters, respectively.

Given these definitions, the execution time can be estimated
as follows:

timeest = max

(
tlpl × jlocal + tcpl × jstolen

nlocal
,

tcpc × (jcloud − jstolen)
ncloud

)
+ timesynch (1)

Equation 1 calculates the estimated time of the execution
with a given cloud resource allocation, ncloud, and the number
of jobs to be stolen, jstolen. Because the processing on the
cloud and local cluster are concurrent, it suffices to take
the max between the two execution times. After all jobs
have been processed, the results must be reduced through a
synchronization of the two clusters. This additional overhead
is captured with timesynch. In our model, we assumed that the
instance initializations do not introduce significant overhead.
This assumption is valid for most of the applications that
have long running nature where the computation time is the
dominating factor.

The above equation can be directly used to determine
resource allocation for the time constraint-driven execution
case. This mode of execution requires timeest to be equal or

TABLE I
LEGEND

Symbol Definition

tlpl Time for processing a local job by a local instance
tcpc Time for processing a cloud job by a cloud instance
tcpl Time for processing a cloud job by a local instance
ncloud Number of cloud instances
nlocal Number of local instances
jstolen Number of stolen jobs from cloud cluster
jlocal Number of jobs in local cluster
jcloud Number of jobs in cloud cluster
cinst Running cost of an instance per unit time on cloud
ctrans out Cost of transferring out unit amount of data from cloud

close to the user provided time constraint. This can be satisfied
through adjusting the ncloud parameter, but doing so affects
jstolen. To illustrate, when ncloud is set to a lower value, then
the aggregated throughput of the cloud decreases, resulting
in opportunities for local compute resources to process more
cloud jobs. The relationship between ncloud and jstolen is
obtained as follows:

jstolen =

(
jcloud −

(tlpl × jlocal)/nlocal

tcpc/ncloud

)
×(

nlocal/tcpl

(ncloud/tcpc) + (nlocal/tcpl)

)
(2)

The left side of the main multiplication represents the esti-
mated number of remaining jobs in the cloud after processing
all the jobs in the local cluster. The latter portion calculates
the job consumption ratio by the local cluster. Therefore, the
multiplication results in the estimated number of jobs that will
be stolen from the cloud resources and processed by the local
cluster.

A further concern is that jstolen and ncloud are complicated
by the cost incurred on the cloud. Thus, we must also relate
cost for these two factors in our cost estimate:

costest =

tcpc × (jcloud − jstolen)× cinst+ (3a)
size(jstolen)× ctrans out+ (3b)
size(jcloud)× cstorage + size(jcloud)× ctrans in (3c)

In this equation, cinst refers to the cost of running an instance
in the cloud for a unit of time. The cost of transferring a
data unit from cloud environment to local cluster is given
with ctrans out. The cstorage term returns the storage cost of
a data unit. Note that most of these parameters are defined
by the cloud service provider and therefore can be treated as
constants. To estimate cost, first, the running cost of the cloud
instances is calculated (3a). Next, the data transfer cost from
the cloud environment to local cluster is shown with (3b).
The storage cost, and the cost of initially uploading data to
the cloud, are at last added (3c).

Finally, Equation 4 shows how the boundaries of the esti-
mated values are determined according to the user constraints.

0 ≤ timeest ≤ time

0 ≤ costest ≤ cost
(4)



B. Model Implementation

In the previous subsection, we presented the parameters and
equations needed for estimating the execution time, cost and
the stolen number of jobs from the cloud resources. There are
several practical issues in using this model, which we discuss
in this subsection.

The job processing times by each type of compute instance
are determined during runtime by the processing clusters. Each
time a group of jobs is processed, the average processing time
is updated by the master node and reported to the head node.
After processing several groups of jobs, these parameters can
be expected to converge. The unit cost parameters, cinst and
ctrans ∗, are constant and determined by the cloud service
provider.

The number of instances on the cloud, ncloud, is an input
for calculating the estimated time and the number of stolen
jobs in the system. The different values for ncloud likely affect
our time and cost estimation. Therefore, ncloud is computed
iteratively: When the closest value to the user cost and time
constraints is approached, system stops iterating and sets the
ncloud value.

Algorithm 1: Head Node
Input : user constraint, contract params
Output: Final Result

repeat
cluster params := receive request();
jobs := prepare jobs(cluster params);
numb instances :=

compute numb inst(cluster params,
user constraint, contract params);

setup cluster(cluster params, numb instances);
assign jobs(cluster params, jobs);

until is job unavailable();

global reduction();

Algorithm 1 defines how the head node handles the
resource allocation requests. First, a cluster’s master node
requests for jobs from the head node. The head node accepts
the request and prepares a group of jobs while considering
locality. After the jobs are prepared, the head node deter-
mines the new number of cloud instances according to the
performance of the requesting cluster so far. Next, the head
node sends this information to requesting master node. The
master then sets up the new number of instances in the cloud
and receives prepared jobs from the head node. The compute
(slave) instances then begin processing the assigned jobs using
the Map-Reduce processing structure.

The calculation of the number of instances is given in Al-
gorithm 2. The model is executed with the cluster parameters
and structures containing the cloud pricing contract, which
is then compared with a user’s cost constraints. The pricing
contract data structure represents the agreement between user
and the cloud service provider. It provides the specification of
the resources and the cost information of running an instance
and transferring data, i.e., the constants in our model. Given a
time constraint, our approach allocates the minimum number
of instances that can execute the application on time, thereby
minimizing cost. On the other hand, given a cost constraint,

Algorithm 2: Computing Number of Instances
Input: cluster params, user constraint, contract params
Output: numb instances

update average(cluster params.clusterID,
cluster params.proc time);

numb instances := 0;
switch user constraint.type do

case TIME
repeat

time est := estimate time(numb instances,
cluster params, contract params);

numb instances := numb instances + 1;
until time est < user constraint.value;

case COST
repeat

cost est := estimate cost(numb instances,
cluster params, contract params);

numb instances := numb instances + 1;
until cost est > user constraint.value;

numb instances := numb instances- 1;

the algorithm maximizes the number of allocated instances to
meet the cost constraint in order to minimize the execution
time.

In the next Section, we evaluate our models and allocation
algorithms using data-intensive applications in a real cluster
environment on Ohio State campus in conjunction with the
Amazon Elastic Compute Cloud (EC2).

IV. EXPERIMENTAL RESULTS

In this section, we present the results of a comprehensive
evaluation of our model and system. Specifically, we analyzed
the behavior of our model and system under different config-
urations, and observed whether user constraints can be met
efficiently.

A. Experimental Setup
During our evaluation, we used two geographically dis-

tributed clusters: Our local cluster which is located at the Ohio
State campus and a cloud-based cluster in the Virginia region.
A single cloud instance is initiated for the head node role in
North California region.

Our local cluster on Ohio State campus contains Intel Xeon
(8 cores) compute nodes with 6GB of DDR400 RAM (with 1
GB dimms). Compute nodes are connected via Infiniband. A
dedicated 4TB storage node (SATA-SCSI) is used to store data
sets for our applications. For the cloud environment, we use
Amazon Web Services’ Elastic Compute Cloud (EC2). High-
CPU Extra large EC2 instances (c1.xlarge) were chosen
for our experiments. According to Amazon, at the time of
writing, these are 64-bit instances with 7 GB of memory.
High-CPU instances provide eight virtual cores, and each core
further contains two and a half elastic compute units (equiv-
alent to a 1.7 GHz Xeon processor). High-CPU Extra Large
instances are also rated as having high I/O performance which,
according to Amazon, is amenable to I/O-bound applications
and suitable for supporting data-intensive applications. The
cloud dataset is stored in the popular Simple Storage Service



(S3). The maximum number of allocated instances is limited
to 16 for each resource. Each allocated instance has 8 cores,
which corresponds to a total maximum of 256 cores in the
system throughout the execution.

Two well-known applications were used to evaluate our
model and system, with various characteristics:
• K-Means Clustering (kmeans): A classic data mining

application. It has heavy computation resulting in low to
medium I/O with small intermediate results. The value of
k is set to 5000. The total number of processed points is
48.2× 109.

• PageRank (pagerank): Google’s algorithm for deter-
mining web documents’ importance [18]. It has low to
medium computation leading to high I/O, with large
intermediate results. The number of page links is 50×106

with 41.7× 108 edges.
The datasets used for kmeans and pagerank are 520GB.

The kmeans dataset is in binary format whereas the pagerank’s
data is ASCII text. The total number of generated jobs with
these datasets is 4144 where each job is 128MB in size.
These jobs are grouped in 16, and each job request from
master node results in assigning one of these groups. To make
node allocation decisions dynamically, our system invokes the
prediction model after every group of jobs that is processed.
These datasets are split between cloud environment and local
cluster. 104GB of each dataset is stored in the local cluster,
and the remaining 416GB is stored on S3.

B. Meeting Time Constraints
In our first set of experiments, we show how our model

meets different time constraints from the user. We analyzed
each of these experiments in two ways: 1) we observed
how close the actual execution time of the system to the
user’ allowed time constraint. 2) We also observed the cloud
resource allocation behavior throughout the execution in order
to meet these time constraints.

Figure 2(a) compares the actual execution time with user
time constraint for varying configurations. In this set of experi-
ments, the number of local instances is fixed to 16 nodes. In the
main plot, for the first two points at 1000 and 1100 seconds,
the system cannot meet the time constraints. The reason is
due to the fact that, even as we have reached the maximum
available number of EC2 instances (16 nodes), the processing
cannot finish on time. For all remaining configurations, our
model successfully decides the correct number of instances
throughout the execution. The error range between actual
execution times and the time constraints is below 1.5%. In
the subgraph, we show the number of jobs stolen by the local
cluster off the cloud. As the time constraint increases, the
number of stolen jobs should also be expected to increase.
Since less number of EC2 nodes should be allocated for
processing, there is more opportunity for local cluster to
process remote jobs.

The node allocation sequence during the execution is pre-
sented in Figure 2(b). Recall that our system calls the pre-
diction model after every group of jobs processed, and thus,
the x-axis varies on the number of jobs processed. The y-axis
plots the active number of cloud instances. For clarity in the
plot, we show only five representative series, which associate
with certain time constraints. Our first observation is made
on the declining number of instances at the beginning of the
execution. The reason for this is due to the selection of the
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initial processing time parameters, namely tlpl, tcpl, and tcpc.
These parameters are normalized during the execution with
cluster feedbacks.

When the time constraint is set to time-1100, the system
allocates the maximum number of available cloud instances.
This also explains why real execution times of 1000 and 1100
configurations in Fig. 2(a) cannot meet the time constraints.
Another decreasing trend in Fig. 2(b) can be seen at the end of
execution. This is due to our preemptive approach for deciding
the number of instances on the cloud side. More specifically,
our system accepts the situations where timeest ≤ timeuser.
However, timeest > timeuser is not accepted even in the case
of timeest is close to timeuser.

We repeated the same set of experiments with pagerank
application and presented the results in Figure 3(a) and 3(b).
Pagerank application follows a similar pattern to kmeans. If
we analyze the first two data points in Fig. 3(a) with the
time-1200 and time-1400 series in Fig. 3(b), it can be seen
that the system again shows a best effort to meet the time
constraints. However, as with kmeans, due to the limit in
maximum number of available cloud instances, it is unable to
meet the constraints. For the other time constraints, the delta
in actual execution time versus the given constraints is below
1.3%.

Another observation is the jitters in the range of 1000
and 2000 chunks processed, particularly for time-2000 and
time-2200. When the local cluster finishes its local jobs, it
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begins stealing cloud jobs. At this point, if the tcpl parameter
was not sampled well enough, then the system’s decisions
become tenuous. This parameter normalizes after processing
enough number of chunks. For instance, after 2000 chunks
are processed, straight allocation lines are observed. While the
application approaches the end of the execution, we again see
declining trend. This follows the same reasoning with kmeans
application, i.e., preemptive compute instance allocation on
the cloud site.

In the previous set of experiments, the number of local
instances were fixed. However, because local clusters are often
shared among a number of users, there may be situations
where we would want to deallocate local cluster nodes during
execution. In such scenarios, we would expect an increased
number of cloud nodes to help with processing in order to
meet time constraints. We show this situation for kmeans in
Figure 4. The series 25-drop-4, 50-drop-4, and 75-drop-4 refer
to dropping local nodes from 16 to 4 after 25%, 50%, and 75%
(shown as vertical bars in the plot) of the allowed execution
time has elapsed. The time constraint for the execution is set
to 2500 seconds.

For each of the *-drop-4 settings, a sharp increase in the
number of allocated instances on cloud can be seen at the
reflected elapsed time. For 25-drop-4, the number of allocated
cloud nodes increases by 5 up to 12 total only seconds after
the local cluster instances are dropped down to 4. For 50-drop-
4 and 75-drop-4, the cloud nodes increase by 4 each, up to 9
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and 10 total nodes respectively. The arrows in the figure refer
to the points when our model adapts the cloud environment.

The interesting observation here is that the (16 − 4) = 12
local cluster nodes can be effectively replaced by only 4 or 5
cloud nodes and still meeting the 2500 second constraint. This
is due to our system’s accurate modeling of data locality (recall
the majority of data is cloud-based). Therefore, excessive
cloud node allocation is avoided, which saves on costs. The
delta between the true execution time and the constraint is
below 1.9% for 25-drop-4 and 50-drop-4, and 3.6% for 75-
drop-4. The reason for higher error rate for 75-drop-4 is due
to the shorter time period given to adapt to the reduced local
cluster environment.

Another observation can be made on the steady decrease in
the number of allocated nodes on the cloud environment. We
believe this is due to the stabilization of the new tcpl value.
The reason is the available bandwidth that can be consumed
by an instance on the local cluster. Before the number of
nodes is decreased, the same bandwidth is being consumed
by a larger number of nodes. When the local instances are
decreased, the available bandwidth for an instance is increased,
and tcpl became smaller than expected. Since the system
adapts considering the average processing time throughout the
execution, a steady decrease is observed.

C. Meeting Cost Constraints

In this subsection, we run similar experiments to those
done above, but in the context of meeting cost constraints.
Particularly, we compare the user-specified cost constraints
with real execution costs, and present allocation sequence
of the instances on cloud environment. The goals of these
experiments are to show that: 1) the system successfully meets
the user specified cost constraints, and 2) the execution time
is minimized within the available cost constraint range.

In Fig. 5(a) we present the user cost constraints against
actual costs for kmeans. If we focus on the cost constraints
from 0 to 140, we can see that the real costs are very close
to the user provided constraints, i.e., the system effectively
decides the number of cloud instances. After 140, we observe
that the actual cost line is fixed and does not change. The
reason for this behavior is because the system reaches the
maximum number of cloud instances. If we further analyze
the cost-150 node allocation sequence in Fig. 5(b), we also see
that maximum number of nodes are allocated at the beginning
and kept that way throughout the execution.
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Considering only Fig. 5(b), it can be seen that the allocated
number of nodes shows steady increase while time passes.
This is because the system tries to allocate as many instances
as it can within the available cost range. Thus, the minimum
execution time is satisfied. The error range for the costs below
140 is between 0.2% and 1.2%.

If we focus on the Fig. 5(a) subgraph, the execution times
of increasing cost constraints show a decreasing trend given
higher cost constraints. This is expected because more relaxed
cost constraints result in a larger number of node allocation.

In Fig. 6(a) and 6(b) we repeat and present the same
experiments using pagerank. We can see a similar pattern to
the kmeans application. In Fig. 6(a), the actual costs again
increase with higher cost constraints. This shows that there
is still some opportunity for increasing cost and decreasing
execution time. The error range of the cost constraints against
execution costs is below 1.1% for all configurations.

Considering Fig. 6(b), we observe more node allocation
between 0 and 2000 jobs processed, after which the node
allocation is stabilized. The reason is as follows: Initially, the
system tries to adapt the environment before 1000. However,
when it approaches the stabilization point, the local cluster fin-
ishes its local jobs and starts stealing from cloud environment.
This creates additional jitters until around 2000 jobs have been
processed. Then the system approaches the optimal values for
job processing times, resulting in steady node allocation.
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Fig. 6. PageRank under Cost Constraints

V. RELATED WORK

Analysis of large-scale data, or data-intensive computing
has been a topic of much interest in recent years. Of par-
ticular interest is developing data-intensive applications using
a high-level API, primarily, Map-Reduce framework [8], or
its variants. Map-Reduce has interested cloud providers as
well, with services like Amazon Elastic MapReduce now
being offered. Very recently, there has been interest in use of
Map-Reduce paradigm for analysis of highly distributed data.
Cardosa et al. proposed different architectures for MapReduce
which enable different widely-distributed computations [4].
Their Distributed MapReduce solution shares similarities with
our system [2] in which the reduce operations are performed in
a hierarchical manner. A similar approach was also developed
by Luo et al. [13] where several clusters perform concurrent
MapReduce operations and their results are reduced with a
final global reduction operation. These efforts do not consider
meeting user constraints and dynamic resource provisioning.

A recent effort by Deelman et al. [9] examined application
performance and cost for workflows when data is deployed
on various cloud storage options: S3, NFS, GlusterFS, and
PVFS. Mao and Humphrey proposed an approach where they
dynamically (de)allocate cloud instances in order to meet user
constraints [14]. They consider only single environment for the
computation whereas our work exploits cloud as well as local
resources. Amazon’s Auto Scaling [1] is a core service for
enabling elasticity on their cloud. Auto Scaling allows users to



define certain rules, e.g., scale down by one node if the average
CPU usage dips below 60%. Oprescu and Kielmann’s BaTS
system [17] addresses the problem of executing bag-of-tasks in
the cloud while dynamically meeting cost constraints. Unlike
many schedulers with similar goals, BaTS does not require a
priori knowledge and learns application performance during
runtime. Mao et al. focuses on auto-scaling cloud nodes to
meet cost and time constraints in the cloud [15]. The authors
additionally model the cost and performance effects of various
cloud instance-types, rather than simply changing the number
of instances allocated. These works differ from our system in
that, they do not address the effects from an integration of
local compute resources. Our work is distinct in considering
data-intensive applications on a hybrid cloud.

Several closely-related efforts have addressed the “cloud
bursting” compute model, where local resources elastically
allocate cloud instances for improving application throughput
or response time. An early insight into this model came from
Palankar et al.. They extensively evaluated S3 for supporting
large-scale scientific computations [19]. In their study, they
observed that data retrieval costs can be expensive for such
applications, and the authors discussed possibility of instead
processing S3 data in EC2 (where data transfers are free) in
lieu of downloading data sets off site. De Assunção et al.
considered various job scheduling strategies which integrated
compute nodes at a local site and in the cloud [7]. Each job
(which may include a time constraint) is vetted on submission
according to one of the strategies, and their system decides
whether to execute the job on the cluster or redirect it to
the cloud. Marshall et al. proposed Elastic Site [16], which
transparently extends the computational limitations of the
local cluster to the cloud. Their middleware makes calculated
decisions on EC2 node (de)allocation based on the local
cluster’s job queue. In contrast, we consider scenarios where
data sets might be also hosted on remote clouds. Our system
supports pooling based dynamic load balancing among clus-
ters, and allows for job stealing.

Several efforts have addressed issues in deploying Map-
Reduce over the cloud. Kambatla et al. focused on provi-
sioning the MapReduce jobs on the cloud therefore the cost
of the execution can be minimized while the best perfor-
mance is gained [10]. Related to performance, Zaharia, et al.
analyzed speculative execution in Hadoop Map-Reduce and
revealed that its assumption on machine homogeneity reduces
performance [20]. They proposed the Longest Approximate
Time to End scheduling heuristic for Hadoop, which improved
performance in heterogeneous environments. In another related
effort, Lin et al. have developed MOON (MapReduce On
Opportunistic eNvironments) [12], which further considers
scenarios where cycles available on each node can contin-
uously vary. Our model and its implementation are distinct
considering the aforementioned efforts.

VI. CONCLUSION

In this paper, we focused on cost and time sensitive data
processing in hybrid cloud settings, where both computational
resources and data might be distributed across remote clusters.
We developed a model for the class of Map-Reducible appli-
cations which captures the performance efficiencies and the
projected costs for the allocated cloud resources. Our model is
based on a feedback mechanism in which the compute nodes
regularly report their performance to a centralized resource

allocation subsystem. The resources are then dynamically
provisioned according to the user constraints.

We have extensively evaluated our system and model with
two data-intensive applications with varying cost constraints
and deadlines. Our experimental results show that our
system effectively adapts and balances the performance
changes during the execution through accurate cloud resource
allocation. We show that our system is effective even when
one of the involved clusters drastically and instantly reduces
its compute nodes. The error margins of our system’s ability
to meet different cost and time constraints are below 1.2%
and 3.6% respectively.
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