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Abstract—Synchrotron-based X-ray computed tomography is
widely used for investigating inner structures of specimens at high
spatial resolutions. However, potential beam damage to samples
often limits the X-ray exposure during tomography experiments.
Proposed strategies for eliminating beam damage also decrease
reconstruction quality. Here we present a deep learning-based
method to enhance low-dose tomography reconstruction via a
hybrid-dose acquisition strategy composed of extremely sparse-
view normal-dose projections and full-view low-dose projections.
Corresponding image pairs are extracted from low-/normal-dose
projections to train a deep convolutional neural network, which
is then applied to enhance full-view noisy low-dose projections.
Evaluation on two experimental datasets under different hybrid-
dose acquisition conditions show significantly improved struc-
tural details and reduced noise levels compared to uniformly
distributed acquisitions with the same number of total dosage.
The resulting reconstructions also preserve more structural infor-
mation than reconstructions processed with traditional analytical
and regularization-based iterative reconstruction methods from
uniform acquisitions. Our performance comparisons show that
our implementation, HDrec, can perform denoising of a real-
world experimental data 410x faster than the state-of-the-art
Xlearn method while providing better quality. This framework
can be applied to other tomographic or scanning based X-
ray imaging techniques for enhanced analysis of dose-sensitive
samples and has great potential for studying fast dynamic
processes.

Index Terms—low-dose tomography, image reconstruction,
hybrid-dose measurement, projection denoising, deep learning

I. INTRODUCTION

X-ray computed tomography (CT) is widely used at syn-
chrotron radiation facilities [1], for example to detect de-
fects in structural materials [2], understand pore formation in
shales [3], and investigate network constructions in porous
materials [4]. During X-ray tomographic acquisition, a de-
tector records the decreased photon flux after X-ray photons
penetrate a target from multiple orientations: see Fig. 1. Each
recorded image is called a projection. A specialized algorithm
is then used to reconstruct the distribution of X-ray attenu-
ation in the volume being imaged, providing internal three-
dimensional (3D) morphology at high spatial and temporal
resolutions. However, radiation dosage during data acquisition
is a limiting factor for most tomography experiments, as
extended X-ray exposure can cause beam damage to the
sample. Reducing the number of projection views (sparse-
view) or the X-ray tube current can be used to limit beam

exposure (low-dose), but low-dose data acquisition schemes
yield noisy measurements that significantly reduce the quality
of the reconstructed image.

Many algorithms have been proposed to improve the re-
construction quality for low-dose tomography. Deep learning,
particularly deep neural network (DNN), based reconstruction
methods have shown particular promises. Existing DNN-
based approaches fall into three main groups depending on
the operation domains: 1) right after the data acquisition to
denoise noisy raw measurements (measurement domain learn-
ing) [5, 6], 2) during tomographic reconstructions to repre-
sent retrieval algorithms with learning-based methods (model-
based approaches) [7, 8], and 3) after tomographic recon-
structions to denoise noisy images retrieved with conventional
reconstruction algorithms (image domain learning) [9–13].
Almost all developed methods for low-dose CT reconstruction
improvement require access to full high-quality ground truth
data. However, there are limitations to acquire these data, since
high-quality data typically require high-dose data acquisition
that may not be possible given experimental constraints on
X-ray exposure, as is the case in dose-sensitive samples and
dynamic processes. Recently proposed unsupervised learning
processes have achieved good results [14]. However, these
approaches require estimation of an additive noise model to
correct the data. Further, because a learned model cannot easily
be applied to different samples, a new model must be trained
whenever a new sample or feature is encountered.

We explore here a new approach in which signals from
low-dose projections are enhanced during the acquisition it-
self, as shown in Fig. 1. In this approach, several low-dose
projections are collected with their corresponding normal-dose
counterparts. These low-/normal-dose image pairs are used to
learn a mapping from features and noise through a DNN-based
learning network; the resulting model which then be used to
enhance other noisy low-dose projections. This hybrid-dose
data acquisition strategy requires few normal-dose projections,
which in turn accelerates acquisitions, minimizes dose effects
on samples, and also simplifies the transfer learning. Specifi-
cally, we make the following contributions in this paper:

• We develop a state-of-the-art DNN-based denoising ap-
proach in the measurement domain to achieve high-
quality reconstructions. Our method learns the denoising
model from extremely sparse-view normal-dose projec-
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tions and full-view low-dose projections. The trained
model can be used to enhance and denoise full-view low-
dose projections.

• We explore the strategy to distribute dosage smartly with
best reconstruction quality. The denoising and recon-
struction results are obtained by models learned with
different number of low-/normal-dose projection pairs
and different dosage value for low-dose projections.

• We evaluate our method on two real-world experimental
datasets, and demonstrate that the method can provide
excellent projection denoising and reconstruction results.
The results also outperform traditional regularization-
based reconstruction and deep learning-based denoising
approaches in terms of image quality and computational
efficiency.

We show that the combination of deep learning with hybrid-
dose acquisition can enable high-quality tomographic recon-
structions with low radiation dose. Our method can be ap-
plied to other tomographic or scanning based X-ray imaging
techniques and has great potential for studying fast dynamic
processes.

II. BACKGROUND AND RELATED WORK

We briefly explain the tomographic data acquisition and
reconstruction process, and then review methods used to
improve noisy tomographic reconstructions.

A. Physical models and CT reconstruction

In X-ray imaging, X-rays penetrate a sample and the inci-
dent energy, as attenuated by the density and the thickness
of the sample, is recorded: see Fig. 1. This measurement
results in an X-ray image called a projection. This energy
decrease is characterized by Beer’s Law, which describes
intensity reduction as a function of X-ray energy, path length,
and material linear attenuation coefficient with I = I0e

−µL,
where I0 and I are the initial and final X-ray intensity, µ
is the material’s linear attenuation coefficient (units 1/length)
and L is the length of the X-ray path. During a tomographic
data acquisition, many projections are collected from different
orientations so that the sample is imaged from every angle
and fully covered according to the requirement of the Nyquist
sampling theorem. Typically, each projection is exposed to X-
rays (radiation dose) for a fixed amount of time. The forward
model of CT acquisition is finalized with inverse equation
P = Ax, where P ∈ Rm·p denotes the projection data,
A ∈ Rn×m·p denotes the forward projection model, x ∈ Rn
denotes the reconstructed image, m the number of pixels in
one projection, p the number of projections, and n the number
of pixels/voxels in the reconstructed image.

The tomographic reconstruction is the process of recovering
3D volume of the sample x from a set of 2D projections P . An
analytical solution of tomographic reconstruction problem is
calculated by solving inverse equation directly. However, the
reconstruction quality is highly sensitive to the experimental
setup, number of projections, the quality of acquired projec-
tions, and etc. For instance, short-exposure data acquisitions

yield noisy reconstructed images as too few photons can result
in extremely noisy projections and thus corrupted reconstruc-
tions.

Regularization-based iterative reconstruction methods are
proposed to improve reconstruction quality. These methods
aim to optimize an objective function by considering the phys-
ical model in the iterative model. Many iterative reconstruc-
tion methods are developed based on different regularization
terms, include dictionary learning [15], nonlocal means [16],
total variance and variances [17, 18]. While iterative methods
provide improved reconstruction quality under these undesired
conditions, they are significantly more computationally de-
manding compared to analytical methods [19–22].

B. Deep learning-based modeling for noise reduction

Deep learning techniques, particularly deep neural network
(DNN), have been actively developed in recent years, and
applied to various applications. In particular, deep learning
provides new thinking and tremendous potential in the field of
tomographic image reconstruction [23]. Many algorithms have
been developed to improve reconstruction quality with DNN-
based techniques, which are mainly grouped as measurement
domain learning, model-based approaches, and image domain
learning, as discussed before.

Traditionally, denoising the reconstructed images is widely
used as the sample features are easier to detect and learn
compared to projections that are difficult to distinguish with
overlapping features. Many DNN-based approaches have been
developed to denoise reconstructed images from traditional
analytical method, such as multi-resolution convolutional neu-
ral network (CNN) [9], mixed-scale dense CNN [10], gen-
erative adversarial networks [11], and hierarchical synthesis-
based CNN [12]. However, denoising the reconstructed images
requires training a model with two 3D volumes from the same
sample: one from noisy or incomplete projections and the
other from normal-dose projections. In addition, transferring
a trained model to another sample is not trivial, since the
learned features and the scale of the noise are likely to
have mismatches, e.g., a model trained with shale sample
cannot work on a plant cell sample. Another issue with
denoising reconstructed images is that training a model with
reconstructed images and applying it to other samples runs
the risk of introducing new artifacts in the images or losing
structural information [24].

Denoising methods have been used within [7] or as a re-
placement for [8] tomographic reconstruction algorithms, with
promising results. However, model-based denoising methods
are computationally expensive, with costs similar to those
of the regularization-based iterative reconstruction methods
mentioned in the previous section.

Denoising measurement data directly before reconstruction
has also been proposed. Similar to image domain learning, the
DNN-based denoising model is trained with noisy and clean
image pairs. For example, Lee et al. [5] proposed DNN-based
algorithms to synthesize missing-view data with full-view
measurements. Yang et al. [6] presented a DNN-based method



Fig. 1. The architecture of the proposed deep learning reconstruction framework for low-dose tomography under hybrid-dose acquisition mode (HRrec).
Hybrid-dose projections are recorded and corresponding image pairs are extracted to learn the denoising model. Learned model is then applied to full-view
low-dose projections to obtain denoised full-view projections Pd. Finally, image slices are retrieved with traditional reconstruction algorithms.

trained using low-/high-dose projection pairs to enhance low-
dose X-ray tomographic projections.

Overall, the signal-to-noise ratio decreases as photon counts
drop. The structural information about the sample cannot be
reconstructed successfully unless regularization methods or
denoising methods are used. While there are ample studies
on reconstructed image denoising, researches on denoising
projections are limited.

III. METHOD

In this section, we explain our DNN-based denoising
method via a hybrid-dose acquisition scheme to improve low-
dose tomography reconstructions.

A. Overview: Feature extraction with hybrid-dose acquisition

Fig. 1 shows the proposed DNN-based reconstruction
framework for low-dose tomography under hybrid-dose ac-
quisition scheme, which is referred to as HRrec. This frame-
work consists of three parts. First, hybrid-dose projections
are recorded including several extremely sparse normal-dose
projections (Pn) and full-view low-dose projections (Pl). The
stars on the top right corner of sub-figures show different
acquisition conditions, where the number of total star lines
represents the number of total projections and the thickness of
each star line represents the dosage value for each projection.
Then corresponding image pairs are extracted from low-
/normal-dose projections to train the network. The architecture
of the DNN is discussed in the next section. The trained
DNN denoising model was then used to enhance the full-view
low-dose projections (Pl). Finally, a traditional reconstruction
algorithm, such as filtered back-propagation, is adopted to
retrieve images with the denoised projections (Pd).

B. DNN architecture

Our denoising model improves the state-of-the-art U-Net
architecture [25] with residual blocks [26], referred to as
residual U-net, to facilitate the information flow. As shown in

Fig. 1, the inputs to the neural networks are the corresponding
image pairs extracted from low-/normal-dose projection pairs.
The network consists of two principal parts: the image encoder
and decoder. The encoder uses four successive encoding
processes to extract features, each containing two residual
units, as shown on the top right legend. This use of residual
units is proved to be efficient to learn noise models for
image denoising in computer vision and computed tomography
applications [27].

The encoded features then pass through three decoding
processes to decode the features. Each process is the same
as before with two residual units. At the end, a convolution
layer with one 1×1 kernel generates the single channel image
to match the target image. Feature maps generated from trans-
posed convolution layers are concatenated with the preceding
feature maps of the same scale from the encoder part.

C. Objective function

In this section, we present the loss functions used in the
residual U-Net, which are the main components to quantify
the difference between the noisy input and ground truth.

1) `1 loss is a mean-based metric that encourages the pixels
of the output image y to match exactly the pixels of the
target image ŷ. It is similar to the `2 loss (mean-squared
error), but does not over-penalize larger errors between a
denoised image and the ground truth as does `2 loss; this
prevents over-smoothness and blurring. The `1 loss also helps
further improve signal-noise-ratio. In our low-dose CT image
denoising task, the `1 loss function is:

`1(ŷ, y) =
1

CWH
‖ŷ − y‖1, (1)

where ŷ and y are the ground truth (normal-dose projection)
and a denoised projection, respectively. C, W , and H are the
image width, height, and depth.

2) Perceptual loss helps to retain texture and structural
details of the denoised image by comparing high level differ-



ences, like content and style discrepancies, between images.
We implement it by calculating the mean squared error of
features extracted by a pre-trained VGG network [28]:

lV GG(ŷ, y) =
1

CfWfHf
‖V GG(ŷ)− V GG(y)‖2, (2)

where Cf ,Wf , Hf represent the dimension of the feature
maps extracted by the pre-trained V GG network.

Overall loss function: We combine `1 loss to ensure pixel
identity and perceptual loss to keep high-level texture and
structural details:

l = α`1 + βlV GG (3)

where the coefficients α and β balance these two loss terms,
which are decided empirically. In the training stage, the total
loss between the output y and a normal-dose projection ŷ
was calculated for each step and then back-propagated for
the neural network optimization. By combining these two loss
functions, we insure the quality of refined projection image.

D. Model training

Our residual U-Net with hybrid loss was trained using image
patches with the size of 128×128 extracted from low-/normal-
dose projections pairs, then applied on entire full-view low-
dose projections. We show different number of projection pairs
to explore the relationship between the denoised results and the
requirement of normal-dose projections in the result section.
For each case, 80% of total low-/normal-dose projections pairs
are used for training and the rest are used for validation. We
use the adaptive momentum estimation (Adam) to optimize our
residual U-Net with the batch size of 16. We set the learning
rate to 1×10−4. We implemented the network with Tensorflow.

E. Tomographic reconstruction

We feed the full-view low-dose projection images Pl into
the trained denoising model, as shown in Fig. 1, produc-
ing full-view high quality denoised projection images Pd.
We then perform tomographic reconstruction with the open-
source TomoPy toolbox [29], using the Fourier grid algorithm
(GridRec) with a Parzen filter to balance reconstruction speed
and accuracy. Other tomographic reconstruction methods can
also be used.

IV. EVALUATION

We now present the denoising and reconstruction perfor-
mance of our proposed method when applied to the glass and
shale datasets (Fig. 2) from TomoBank [30] under different
configurations. We used one NVIDIA Tesla V100 SXM2
(32GB memory) GPU card for training, denoising, and re-
construction.

We evaluate our proposed methods against a variety of data
acquisition schemes and compare our method to the state-of-
the-art learning-based algorithm, Xlearn [6], and one iterative
total variation-based (TV) regularization reconstruction [17]
method both in terms of image quality and computational time
requirements.

Fig. 2. Overview of the glass and shale samples. One normalized projection
slice for the (a) glass and (c) shale samples. One reconstructed image slice
with Gridrec algorithm for the (b) glass and (d) shale sample.

A. Glass sample

The glass sample contains 20% volume fractions of borosil-
icate glass spheres encased in a polypropylene matrix. It
was measured at the 2-BM fast tomography beamline of the
Advanced Photon Source (APS), Argonne National Laboratory
(ANL). The experiment was performed with source energy
of 27.4 keV and exposure time of around 0.0001s as the
normal-dose projections Pn. 1500 projections were taken over
180◦. Fig. 2(a) shows one normalized projection in the normal-
dose measurements. Multiple bubbles are summed along the
X-ray propagation path for each ray path, resulting in the
structure overlap. The green box on the top right corner
shows the zoom-in structural details. Fig. 2(b) shows one
reconstructed image slice retrieved from full-view normal-
dose measurements with Gridrec algorithm. The reconstructed
structures are seen clearly in this figure.

In order to simulate low-dose projections from these normal-
dose measurements Pn, we used Siddons ray-driven forward
projection method [31], and added Poisson noise as:

Pl ∼ Poisson{b0Pn}/b0 (4)

where b0 is the blank scan factor representing the dosage
value per ray/pixel and Pl is the simulated low-dose detector
measurements. No electronic readout noise was simulated.
The dosage reduction ratio of simulated low-dose measure-
ments can be adjusted by setting the number of photons per
projection for the blank scan factor b0. In the glass sample,
the average number of photons for normal-dose projections
per pixel is measured to be around 5000. For simplification,
we use 5000 to represent the number of photons received
per projection for each normal-dose projection. Low-dose
projections are simulated with Eq. 4 by setting b0 = 1000,
100, and 10 as lower dosage values compared to the dosage
of normal projections. We use the Structural Similarity Index



Fig. 3. Simulated low-dose projections and denoised projections and re-
construction results for the glass sample. The first and third rows show the
simulated low-dose projections and reconstruction results with the dosage
value of (a, g) 1000, (b, h) 100 and (c, i) 10 per projection. The second and
last rows show the denoised projections and reconstruction results enhanced
with the models trained with four projection pairs and the dosage value of (d,
j) 1000, (e, k) 100 and (f, l) 10 in the low-dose simulations.

(SSIM) and Peak signal-to-noise ratio (PSNR) to quantify
the structural similarity and noise level compared to original
normal-dose projections. As shown in Fig. 3(a–c), the SSIM
of simulated projections decreases with decreasing dosage
per projection, and consequently the structural details become
more difficult to distinguish.

Denoising models are trained with simulated low-dose and
experimentally measured normal-dose projection pairs to en-
hance the full-view low-dose projections Pl and thus obtain
the denoised projections Pd. Fig. 3(d–f) show the denoised
projection results Pd with four different low-/normal-dose
projection pairs at 0◦, 45◦, 90◦, and 135◦ with the dosage
value of low-dose projections b0 equals to 1000, 100, and 10.
Denoised projections Pd (Fig. 3(d–f)) demonstrate significant
noise reduction and structural details improvement compared
to corresponding low-dose projections Pn (Fig. 3(a–c)). This
is also validated with improved SSIM and PSNR values. These
improvements are even more significant for the projections
from lower-dosage cases. For the low-dose projections with
dosage values of 100 and 10, it is difficult to distinguish the
structures of the glass phantoms with very low SSIM and
PSNR values. By using the denoised models the denoised
projections (Fig. 3(e, f)) are significantly improved.

We also compare the denoised projection performance under

Fig. 4. SSIM and PSNR distribution with respect to the number of total
photons under each configuration for the (a, b) glass and (c, d) shale sample.
Green, blue, yellow, and orange lines in (a, b) denotes the performance of
enhanced projections with different number of low-/normal-dose projection
pairs (4, 32, 128, and 256). Five dots on each line represent different dosage
values b0 = 10, 50, 100, 500, 1000 for corresponding low-dose projections.
Blue line in (c, d) denotes the performance of enhanced projections with
the models trained with 32 low-/normal-dose projection pairs. Five dots on
each line represent different dosage values b0 = 50, 100, 200, 500, 1000 for
low-dose projections. Black line represents the performance of pure low-dose
projections.

more hybrid-dose acquisition schemes in terms of SSIM and
PSNR values to explore the influence of different number of
low-/normal-dose projection pairs. Fig. 4(a, b) depict SSIM
and PSNR values in terms of mean and standard variation
for the denoised projections enhanced with 4, 32, 128, and
256 low-/normal-dose projection pairs, shown in green, blue,
yellow, and orange lines, respectively. Five dots on each line
represent the dosage value of low-dose projections b0, which
are 500, 100, 50, and 10 respectively. We calculate the total
photons for each configuration as x label by summing up
all required sparse-view normal-dose and full-view low-dose
projections. By comparing these four lines under different
hybrid-dose acquisition modes, we could conclude that more
projection pairs don’t improve enhanced projection perfor-
mance. On the contrary, the least low-/normal-dose projection
pairs, which is four projection pairs in our study, always
performs the best in terms of SSIM and PSNR values. We
also calculate SSIM and PSNR values of low-dose projections
under uniformly distributed acquisition modes. Ten different
dosage values per projection are simulated with respect to
the total photons and treat as the baseline, shown as the
black line in figure 4(a, b). The performance of non-hybrid
measurements (black line) is always worse than that of the
denoised projections with the network enhancement (green,
blue, yellow and orange lines) under the fixed number of total
photons. In other words, when the number of total photons
is limited, uniformly distributing the total photons to each
projection can results in mediocre or sub-optimal projection
quality. As empirically shown, it is better to concentrate the
photons to several projections as normal-dose projections, and
uniformly distribute the rest as low-dose projections.



Next, we study the reconstruction results from full-view
normal-dose projections Pn, which can also be noisy due
to the insufficient dose, full-view low-dose projections Pl.
Fig. 2(b) shows the the tomographic reconstructions from Pn,
whereas Fig. 3(g–i) and (j–l) illustrate reconstructions from Pl
and their corresponding denoised versions, respectively. The
SSIM value of the final reconstruction slice for the dosage
value of 1000 (Fig. 3(j)) improves from 0.90 to 0.95. For the
reconstruction results with pure low-dose measurements with
dosage of 100 (Fig. 3(h)) and 10 (Fig. 3(i)), it is difficult
to distinguish the structures of the glass phantoms with very
low SSIM values. The final reconstructions (Fig. 3(k, l))
from enhanced projections with corresponding trained models
are improved significantly in terms of visual quality and
quantitative SSIM value.

Fig. 5. SSIM distribution of reconstructed slices with respect to the number
of total photons under different hybrid-dose acquisition schemes for the (a)
glass and (b) shale sample. Green, blue, yellow, and orange lines in (a)
denotes the performance of enhanced projections with four different number
of low-/normal-dose projection pairs (4, 32, 128, and 256). Five dots on each
line represent different dosage values b0 = 10, 50, 100, 500, and 1000 for
low-dose projections. Blue line in (b) denotes the performance of enhanced
projections with the models trained with 32 projection pairs. Five dots on
each line represent different dosage values b0 = 50, 100, 200, 500, and 1000
for low-dose projections. The black line represents the performance of pure
low-dose projections.

We also compare the mean SSIM values of the final
reconstruction volume performance to explore the influence
of different number of normal-dose and low-dose projection
pairs and how to distribute the total X-ray photons. We
could tell there are some differences between Fig. 4(a). Final
reconstruction performed from the learned denoising models
with several normal-dose projections outperform uniformly
distributed the total photons to each projection. The two points
beneath the black line are reconstruction results from the
models trained with 128 and 256 low-/normal-dose projection
pairs and low-dose projection dosage values b0 of 10 and 50.
When we compare the SSIM performance under the fixed
number of total photons, the points on green line and blue
line significantly outperform these two configuration and also
better than the black line which is uniformly distributing
dosage for non-hybrid measurements. These points on the
green and blue lines represent reconstruction results trained
with 4 and 32 low-/normal-dose projection pairs and low-dose
projection dosages b0 of around 500 and 1000. This is because
if the dosage value of projections is too low, the structural
details are smeared by the noise. Simply adding more normal-
dose projections doesn’t improve the structural restoration. In
other words, when the number of total photons is fixed, it

Fig. 6. Simulated low-dose projections and denoised projections and re-
construction results for the shale sample. The first and third rows show the
simulated low-dose projections with the dosage value of (a, g) 1000, (b, h)
500 and (c, i) 10 per projection. The second and last rows show the denoised
projections enhanced with the models trained with 4 low-dose and normal-
dose projection pairs and the dosage value of (d, j) 1000, (e, k) 500 and (f,
i) 100 for the low-dose simulations.

is better to distribute the photons to fewer projections, and
uniformly distribute the rest with not too low dosage value
for each projection.

B. Shale sample

We further validated the proposed method on a second
experimental dataset, with quite different structural features,
the shale sample. Shale is a challenging material because
of its multi-phase composition, small grain size, low but
significant amount of porosity and strong shape- and lattice-
preferred orientation. In this work, we use a shale sample
dataset from the Upper Barnett Formation in Texas. We used
1501 projections acquired over 180◦ at APS as the normal-
dose projections. Fig. 2(c) shows one normalized projection
in the normal-dose measurements. Multi-phase compositions
are summed up along the X-ray propagation path for each ray
path, resulting in the structure overlap. Fig. 2(d) shows one
reconstructed image slice retrieved from full-view normal-dose
measurements with Gridrec algorithm. The average number
of photons for normal-dose projections per pixel is measured
around 4000. We simulate the low-dose projections from these
normal-dose measurements according to Eqn. 4.



Figs 6(a–c) and 6(g–i) show simulated low-dose projections
and corresponding reconstructed image slices for low-dose
projections with blank scan factor b0 = 1000, 500, and 100.
Grain structures are smeared by the noise with the decreased
dosage value per projection in the low-dose measurements,
which is also validated with the SSIM and PSNR of simulated
projections and SSIM of reconstructed image slice. Similar to

Fig. 7. Projection denoising performance comparison with Xlearn for the (a–
c) glass and (d–f) shale sample: (a, d) normal-dose projections, (b, e) denoised
projections with our method, HDrec; (c, f) denoised projections with Xlearn.

the glass sample, we trained the residual U-Net to estimate
the high-resolution measurements (Pn) when provided with
full-view low-dose projections Pl (b0 = 1000, 500, 10) with
32 low-/normal-dose projection pairs. The second row of
Fig. 6(d–f) and Fig. 6(j–l) show the denoised projections Pd
and reconstruction results enhanced by the denoised models.
Denoised projections Pd could remove the noise significantly
and improve the structural details compared to corresponding
low-dose projections Pl, shown in Fig. 6(a–c). Tomographic
reconstructions (Fig. 6(j–l)) of corresponding denoised full-
view projections also show improved structural restoration,
which is also validated with SSIM values.

We also plot the SSIM and PSNR values of projection
slices (Fig. 4(c, d)) and SSIM values of reconstructed slices
(Fig. 5(b)) vs. number of total photons for each configuration.
The performance of uniform distributed low-dose measure-
ments (black line) is always worse than that of the denoised
projections with network enhancement (blue line) under a fixed
number of total photons, which is consistent with the glass
sample results. It is better to concentrate photons to several
projections as normal-dose projections, as shown before, and
uniformly distribute the rest as low-dose projections.

C. Projection denoising performance comparison with Xlearn
We compare the denoised projection results against a previ-

ously proposed learning-based method, Xlearn. This compari-
son method was originally trained with several low-/high-dose
projection pairs and applied to whole low-dose measurements.
For fair comparison with our case, we use the same network
architecture and training strategies as Xlearn and retrain for
the low-/normal-dose projection datasets used in this work. As
shown in fig. 7, our method achieves better structural restora-
tion and noise removal performance compared to Xlearn.

Fig. 8. Reconstruction performance comparison with total variation-based
regularization method for the (a–c) glass and (d–f) shale sample. (a, d)
Reconstruction results with Gridrec for low-dose projections of same number
of total dosage as hybrid-dose measurements. (b, e) Reconstruction results
with Gridrec for denoised projections. (c, f) Reconstruction results with TV-
based method for low-dose projections of same number of total dosage as
hybrid-dose measurements.

D. Reconstruction performance comparison with total
variation-based regularization method

We also compare reconstruction image quality with that
obtained via the iterative total variation-based (TV) regulariza-
tion reconstruction method. We show the reconstructed results
(Fig. 8(b, e)) generated by the denoising model trained with
32 low-/normal-dose projection pairs and low-dose dosage
values of 100 and 200, respectively. For a fair comparison, we
simulate the uniform distributed low-dose projections using the
same total dosage as for HDrec: 206 and 285 per projection
for glass and shale, respectively. The Gridrec (Fig. 7(a, d))
and TV-based (Fig. 7(c, f)) reconstructions for the glass and
shale samples are worse than those obtained with HDrec, both
qualitatively and quantitatively.

E. Computational time comparison

We use the glass sample to compare the computational costs
of HDrec, the Xlearn-based projection denoising method, and
the TV-based iterative reconstruction method. All methods
are run under the same computer configuration. 1) Single
projection denoising: HDrec’s use of a fully convolutional
neural network allows it to complete in 1.34s: 410 times
faster than the 550s taken by Xlearn. 2) Reconsructing
a single image: For HDrec and Xlearn, this requires the
application of gridrec to denoised projections (around 0.86s
for a single image); for TV-based iterative reconstruction,
only the reconstruction operation is needed to obtain the final
image slice, with average time of around 55.79s. 3) Total
time from denoising of projections to reconstruction: For a
complete dataset, it takes around 1 hour, 9.5 days, and 17 hours
for HDrec, Xlearn, and the TV-based method, respectively,
corresponding to speedups of 214 and 16 for HDrec over
Xlearn and the TV-based method, respectively.



V. CONCLUSION

We have presented a deep learning-based enhancement
method, HDrec, for low-dose tomography using hybrid-dose
measurements, which contains extreme sparse-view normal-
dose projections and full-view low-dose projections. The de-
noised projections and reconstructed slices show significant
improvement when compared to xlearn-based projection de-
noising and TV-based reconstruction methods in terms of
image quality and computational efficiency. In addition, we
provide a strategy to distribute dosage smartly with improved
reconstruction quality. When total dosage is limited, the strat-
egy of fewer normal-dose projections and not too low full-
view low-dose measurements greatly outperforms the uniform
distribution of the dosage.
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