
Petascale XCT: 3D Image Reconstruction with
Hierarchical Communications on Multi-GPU Nodes

Mert Hidayetoğlu, Tekin Bicer†, Simon Garcia de Gonzalo‡, Bin Ren§, Vincent De Andrade†,
Doga Gursoy†, Raj Kettimuthu†, Ian T. Foster†, and Wen-mei W. Hwu

University of Illinois at Urbana-Champaign, USA
†Argonne National Laboratory, IL, USA,
‡Barcelona Supercomputing Center, Spain
§College of William & Mary, VA, USA

Abstract—X-ray computed tomography is a commonly used
technique for noninvasive imaging at synchrotron facilities. Iter-
ative tomographic reconstruction algorithms are often preferred
for recovering high quality 3D volumetric images from 2D X-
ray images, however, their use has been limited to small/medium
datasets due to their computational requirements. In this paper,
we propose a high-performance iterative reconstruction system
for terabyte(s)-scale 3D volumes. Our design involves three novel
optimizations: (1) optimization of (back)projection operators by
extending the 2D memory-centric approach to 3D; (2) performing
hierarchical communications by exploiting “fat-node” architec-
ture with many GPUs; (3) utilization of mixed-precision types
while preserving convergence rate and quality. We extensively
evaluate the proposed optimizations and scaling on the Summit
supercomputer. Our largest reconstruction is a mouse brain
volume with 9K×11K×11K voxels, where the total reconstruction
time is under three minutes using 24,576 GPUs, reaching 65
PFLOPS: 34% of Summit’s peak performance.

I. INTRODUCTION

Synchrotron light source facilities around the world help
tens of thousands of researchers every year carry out extremely
challenging experiments and ground-breaking research. X-
ray computed tomography (XCT) is one of the widely used
imaging modalities at synchrotron light sources for imaging
materials, samples and biological specimens in 3D with high
temporal and spatial resolution, ranging from several microm-
eters down to sub-20 nanometer resolution. The high-energy
synchrotron X-ray sources, such as the Advanced Photon
Source (APS) at Argonne National Laboratory (ANL), enable
imaging thick specimens that can yield massive amounts of
measurements, exceeding tens of GB/s rates and producing
TBs-scale data per experiment [1]. For example, imaging a
single adult mouse brain of a few centimeters diameter at
µm resolution requires a “tiled” tomography experiment that
produces more than 1.7 TB (9K×11K images with 4.5K
angles) measurement data. Further, the reconstruction of such
data generates more than 4.3 TB 3D volumetric image (with
9K×11K×11K voxels) [2]. High-performant scalable solvers
are needed to reconstruct these large experimental datasets,
especially considering that advancements in domain sciences,
such as neuroscience, require imaging and reconstruction of
many of these samples.

Due to experimental constraints, such as extreme conditions
(high radiation dose) or physical limitations (vibrations or

drifts during data acquisition), produced data can be far from
the ideal and can consist of noisy images with undesired
artifacts. These imperfect measurements can adversely impact
the reconstruction process resulting in unsatisfactory output.
The ability to mitigate such noise and artifacts are impor-
tant considerations when it comes to choosing between the
two broad categories of reconstruction approaches: analytical
methods and iterative solvers. While analytical methods, such
as filtered-backprojection, are typically fast algorithms, they
produce sub-optimal reconstructions with imperfect (noisy)
measurement data. In contrast, iterative tomographic recon-
struction solvers enable integration of advanced regularizers
and models, and iteratively reach for a solution by solving
an optimization problem. They also provide an essential
framework for incorporating imperfections into the model
and therefore, mitigate these artifacts and achieve the desired
resolution. However, such improved reconstruction comes at
the expense of significantly higher computational cost.

Iterative reconstruction solvers have so far been used for
small/medium scale tomography datasets mostly due to the
aforementioned computational costs. Different parallelization
methods have been developed to ease this cost, from naive
data-parallel approaches that process different slices of the
measurement data (sinograms) in parallel to advanced in-
slice and memory-centric approaches [3]–[5]. For parallel
beam geometry, sinogram-based reconstruction methods ex-
ploit data parallelism by reconstructing each 2D slice (sino-
gram) independently. After the reconstruction is done, all
reconstructed slices (tomograms) are gathered to a 3D volume.
This approach provides reasonable execution time for most
smaller datasets, but larger datasets require more aggressive
parallelization. In-slice parallelization techniques improve the
speed of single sinogram reconstruction by distributing parts
of a sinogram to several processes, but introduce synchro-
nization and communication overheads during iterations since
the processes that are involved in the processing of the same
sinogram need to combine their intermediate results. The
MemXCT advanced memory-centric parallelization technique
[4] mitigates the synchronization and communication over-
heads by using memoization, and provides efficient sparse
matrix representations and communication patterns.

While the MemXCT parallelization technique provides sig-

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

ar
X

iv
:2

00
9.

07
22

6v
1

 [
cs

.D
C

]
 1

5
Se

p
20

20

a b

Fig. 1: (a) Tilted slice of an IC chip reconstruction and (b) horizontal
slice of a mouse brain reconstruction.

nificant performance improvement compared to its alterna-
tives, reconstruction of full-sized volumes of extreme-scale
samples still requires long processing time. For example,
authors in [4] report that reconstruction of a single mouse brain
sinogram (a slice of the measurement data) requires 10 secs
using 256K-cores at Theta supercomputer at ANL. The full
reconstruction of the sample (9K sinograms) requires more
than 25 hours with the whole supercomputer. Fig. 1(a) and
Fig. 1(b) show reconstructions of a medium-scale integrated
circuit (IC) and a large-scale mouse brain tomograms (slices
of 3D images), respectively. The reconstruction quality is
extremely important to distinguish features for these samples
(transistors and wires for IC, and blood vessels and myelinated
axon tracts for brain sample), therefore iterative solvers are
preferred method for reconstruction. Note that a typical science
study will likely require the full reconstruction of many
samples.

Large-scale GPU resources, such as the Summit supercom-
puter at the Oak Ridge National Laboratory (ORNL) provide
opportunities to apply iterative reconstruction algorithms to
extremely large tomography datasets. However, further op-
timizations and advanced parallelization techniques must be
used to achieve maximum efficiency on such resources. In
this paper, we introduce novel optimizations for state-of-
the-art memory-centric iterative reconstruction approaches to
enable reconstruction of extremely large tomography datasets.
Specifically, we make the following contributions:
• We introduce improved data partitioning and parallelization

techniques that extend 2D MemXCT data parallelism with
3D batch parallelism. Our approach enables optimized
SpMM operations that perform common computational ker-
nels on different voxels (fusing), while performing memo-
ization of irregular data accesses at 3D space (compared to
2D plane in MemXCT).

• We present a hierarchical communication strategy that ex-
ploits multi-GPU node architecture. Our approach leverages
asynchronous multi-level data reduction to minimize com-
munication overhead between nodes.

• We propose mixed-precision implementation that performs
computations using single (or double) precision operations,
whereas it stores and communicates data in half precision

CCD Camera

Discretized X Rays

!

"

#

$

IC Chip Sample (Tilted)

!
#

"

!
#

"

Reconstruction (Output)

Measurement (Input)

Sinogram

Tomogram

Fig. 2: An experimental setup that shows tomographic data acquisi-
tion.

for reduced memory and communication footprint.
• We provide a comprehensive evaluation of our optimizations

and system with four real-world tomography datasets using
up to 24K NVIDIA V100 GPUs and demonstrate sus-
tained peta-scale performance. In particular, we reconstruct
a mouse brain volume with 9K11K11K voxels within 3
minutes using the whole Summit supercomputer, reaching
65 PFLOPS throughput (or 34% of Summit’s theoretical
peak performance).

II. BACKGROUND

In this section, we briefly explain tomographic data acquisi-
tion with synchrotron light sources and the basics of iterative
reconstruction process.

A. Tomography Experiments

During a tomography experiment, a sample is placed on
top of a rotation stage and exposed to X-ray beams. As X-ray
beams travel through sample, the photons are attenuated by the
sample according to Beer-Lambert law [6], [7]. The attenuated
beams are, then, measured at the detector and an X-ray projec-
tion of the sample is recorded at the detector, as illustrated in
Fig. 2. This process is repeated for different rotational views of
the sample, θ, with the aim of meeting Crowther criterion [8].
Consequently, this process generates a set of projections, pθ,
where, for example, θ = {0°, 1°, 2°, . . . , 179°} degrees.

Iterative tomographic reconstruction aims to solve an opti-
mization problem. The following cost function is often used:

x̂ = argmin
x∈C

{‖y −Ax‖22 +R(x)} (1)

Here, y is the measurement data, x represents the estimated
versions of the unknown object, C is a constraint on x and
R(x) is a regularizer function. A is the system matrix or
forward operator that depicts how the X-ray beams intersect
the voxels in each rotational view and thus the relationship
between x and y, i.e. the sinograms and the object, respec-
tively. The solution x̂ is the version of the estimated object
that minimizes the cost function.

A generic optimization solver requires computing the gra-
dients and updating of the object based on those gradients in
an iterative fashion. First, the forward operator, A, is applied

3x4 Process Grid

Ba
tc

h
Pr

oc
es

se
s

Data Processes

Comm.

Comm.

Batch Parallelism

Data Parallelism
!

"

#

0 1

4 5

8 9
0 1 2 3

4 5 6 7

8 9 10 11

Comm. Node
GPU

I/O

I/O

I/O

(a) (b)
Fig. 3: (a) 3D domain partitioning and (b) assignment on GPUs.

to previously estimated xi object, then the result is subtracted
from sinograms, y−Axi, and residual ri is computed based on
a norm, e.g., Euclidean norm as in equation 1. Next, ri is back
projected on xi to compute the gradients. Finally, the estimated
object xi is updated based on the computed gradients and the
new object xi+1 derived for next iteration. In this work, we
consider parallel beam geometry for experiments at the syn-
chrotrons and that all beams travel perpendicularly to the axis
of rotation, which enables independent reconstruction of slices
in 3D object volume from their corresponding sinograms. We
also perform an optimized version of Siddon’s algorithm for
accurate forward and back projection operators [9].

B. Challenges and Opportunities

The sparse system matrix A in Eq. 1 represents the incident
voxels of each ray, and therefore its memory footprint can be
large. Forward and backprojection operators perform irregular
accesses to A and xi while computing residuals and updat-
ing objects. These operations introduce significant overhead
during the iterations. Further, if the A matrix cannot fit into
available memory, incident rows and columns need to be
computed repetitively before each forward and backprojection
operation. Furthermore, if some A and x elements involved in
an inner product calculation performed by a process are in the
memory of another process, that missing information must be
communicated.

Prior work MemXCT addresses communication and irreg-
ular data access overheads using multi-level Hilbert ordering
to maximize the likelihood that all system matrix A elements
involved in an inner product of the sparse matrix-vector multi-
plication are in the same partition [4]. It also avoids repetitive
computation of A with memoization while partitioning large
memory footprint to many processes. However, the MemXCT
approach processes each sinogram independently of others,
hence the optimizations are performed only within 2D slices.

In this work, we identify and exploit the following opti-
mization opportunities in 3D:
• Assuming a ray, ui,j , where i and j are the location of

the ray in the y and x dimensions, respectively, all rays
u∗,j trace the same voxels in their respective slices for all
rotational views. This property can be used to fuse rays
along the y dimension so that the A elements can be reused
when processing these rays.

• MemXCT approaches typically utilize single data type
throughout their execution. This can introduce unnecessary
overhead during data movement. Mixed precision data types

Tile

Domain
Partition

Thread-Level Decomposition

Process (GPU) 0
Process (GPU) 1

Process (GPU) 2Process (GPU) 3

Subdomain

Voxel

Process-Level Decomposition

0 3 4

1 2 5

10 9 6

11 8 7
Block 0

Block 1

Block 2Block 3

𝑥

𝑦
𝑧

(a) (b) (c)
Fig. 4: 3D Hilbert-ordering domain decomposition at (a) tile (b)
process, i.e., GPU, and (c) thread, i.e., block, levels.

can minimize data transfer volume while meeting precision
requirements of computation.

• Direct communication between reconstruction processes can
create redundant overhead. Reducing data between co-
located processes can significantly improve data transfer
efficiency.

III. ALGORITHM DESIGN & OPTIMIZATIONS

In this section, we present five categories of optimizations
that exploit the opportunities identified in Section II.

A. Partitioning and Parallelization

We propose a data partitioning and parallelism arrangement
strategy for both input (sinogram) and output (tomogram) data
cubes as depicted in Fig. 3(a). The proposed strategy combines
two principal parallelism modalities: batch parallelism and
data parallelism.

Batch parallelism takes advantage of the fact that there
is no data dependency between the slices in the y direc-
tion. Therefore, tomogram and sinogram slices are parti-
tioned equally among batch processes1 and reconstructed in
an embarrassingly-parallel fashion. However, because batch
parallelism does not involve partitioning of data in the x and
z dimensions, the per-process memory footprint of slices may
not fit within the GPU memory of batch processes.

Data parallelism solves this problem by partitioning slices
among data processes in the x-z plane along with their
corresponding data structures. As a result, per-process memory
footprint is reduced so that it can fit within GPU memory.
Nevertheless, data parallelism comes with a communication
overhead because of dependency between data partitions in
the x and z dimensions. The detailed design of the proposed
strategy consists of the following components to minimize
communication and maximize data reuse.

1) Hilbert-Ordering Domain Decomposition: In order to
partition a batch of slices in the x-z plane while maintaining
data locality, we extend the MemXCT 2D Hilbert-ordering do-
main decomposition to 3D, where it is applied to all tomogram
and sinogram slices in the y direction. Fig. 3 and Fig. 4 depict
decomposition at the process and thread levels: First, both
tomogram and sinogram domains are tiled into square patches
and ordered with pseudo-Hilbert ordering. These patches are
partitioned equally among processes, where each partition

1In the context of this paper, each process corresponds to a GPU.

corresponds to a subdomain as shown in Fig. 4(b). Each
subdomain is processed by a single GPU.

Fig. 3(a) shows that a domain is partitioned into 12 sub-
domains: two in the x direction, two in the z direction, and
three in the y direction. Fig. 3(b) depicts assignment of these
12 subdomains to a GPU grid with 12 processes. The GPU
grid consists of six nodes and each node contains two GPUs.
Since communications within node have a higher bandwidth
than that of between nodes, data processes processing adjacent
subdomains are placed in the same node whenever possible.

Then each subdomain is partitioned among GPU thread
blocks as shown in Fig. 4(c). Data connectivity and locality of
partitions provided by the Hilbert-ordering domain decomposi-
tion are essential for optimized SpMM design (Sec. III-B) and
hierarchical communications (Sec. III-D) – two of the major
contributions of this paper.

2) Batch Processing Pipeline: To overlap MPI communi-
cation and GPU computation, we partition each batch into
smaller I/O batches that are processed sequentially, i.e., one
I/O batch is reconstructed at a time. As discussed in Sec. III-B,
optimzed SpMM fuses multiple slices in a I/O batch into
minibatches. Processing of these minibatches are pipelined by
overlapping MPI communications and GPU computations as
explained in Sec. III-E. To achieve sufficient overlapping, there
needs to be at least a few minibatches in an I/O batch.

3) Optimal Partitioning Strategy: In order to minimize
the communication overhead of data parallelism, it is better
to minimize partitioning of the 3D data cube in the x-z
dimension; only until per-process memory footprint fits into
GPU memory. Then batch partitioning should take over in the
y dimension with no additional overhead. The level of batch
parallelism is limited by the total number of slices in the y
direction and the need to fuse slices so that the sparse matrix
A can be reused from register by the optimized SpMM.

TABLE I: Computational Complexity

Per Process Total
Comput. MN2/PbPd +MN/Pb

√
Pd MN2 +MN

√
Pd

Memory N2/Pd +N/
√
Pd N2Pb +NPb

√
Pd

Comm.* MN/Pb
√
Pd MN

√
Pd

M row channels, N column channels, Pb batch processes, Pd data processes.
*Latency and contention terms are omitted.

4) Computational Complexity: The computational cost of
a projection depends on size of the 2D detector grid depicted
in Fig. 2. Here, M and N are the number of row and
column channels in the detector grid. Since each discretized
ray measured by a detector propagates through O(N) voxels,
each projection takes O(MN2) time. Parallel rays have the
same trajectory in all slices, and therefore it is sufficient to
store a single sparse matrix with O(N2) nonzeroes and reuse
it from memory for all M slices. The total memory footprint
is increased by a factor of batch processes (Pb) because of the
sparse matrix duplication. On the other hand, data paralleliza-
tion partitions the sparse matrix into Pd data processes, where
each process computes a partial projection. The geometrical
shapes of the partial data is shown in Fig. 7(b). The partial

Tomogram Minibatch Sinogram Minibatch

𝑥
𝑧

𝑥
𝑧

Tomogram Partition

Irregular Memory
Access Footprint

Average Data Reuse: 46.63

Da
ta

 R
eu

se

Sinogram
Partition

Average Data Reuse: 64.73

Irregular Memory
Access Footprint

Da
ta

 R
eu

se

𝑦𝑦

(a) (b)
Tomogram Minibatch Sinogram Minibatch

𝑥
𝑧

𝑥
𝑧

Stage 1
Stage 2

Stage 3

Stage 4

Stage 1

Stage 2

Stage 3

Output Buffer

Multi-Stage Input Buffer
for Projection

Number of Stages: 3
Number of Stages: 4

Multi-Stage Input Buffer
for Backprojection

Output
Buffer

𝑦𝑦

(c) (d)
Fig. 5: (a, b) Tomogram and sinogram partitions and respective data
access footprints, and (c, d) multi-stage buffer shapes.

data of a processes scales with MN/
√
Pd because the cross-

section of each subdomain on the detector halves only when
Pd is quadrupled. To obtain the total projection, the partial
data is communicated among all data processes to be reduced
at the receiving data processes. This additional communication
and reduction is the overhead of data parallelism. Table I
summarizes per-process and total computation, memory, and
communication complexities of the proposed 3D partitioning.

B. XCT-Optimized SpMM Design

By considering memory access patterns specific to XCT,
we optimize the proposed mixed-precision SpMM kernel via a
3D input/output buffering algorithm. This subsection discusses
these optimizations and explains our CUDA implementation
given in Listing 1: The same implementation is used for both
projection and backprojection.

1) 3D Input Buffering: A naive SpMV implementation
suffers not only from irregularity but also redundant accesses
to tomogram and sinogram data because each voxel is (ir-
regularly) accessed more than once by different threads. As
a remedy, our optimized kernel stages data accesses in the
GPU shared memory via 3D input buffers. Fig. 5 illustrates
the basic idea of our optimization by depicting memory
access footprints for a 256×256×50 minibatch; (a) shows
tomogram voxels accessed by a sinogram partition and (b)
shows sinogram voxels accessed by a tomogram partition,
where each partition is computed by a single thread block. In
3D input buffering, each thread block loads the highlighted
input data (Fig. 5: (a) and (b)) to shared memory once,
and reuses it (irregularly) from shared memory. As a result,
memory accesses are reduced by the factor of data reuse shown
in the figure, i.e., darker shade represents higher data reuse
from shared memory. With these reuses, the GPU performance
becomes limited by the memory bandwidth consumed when
reading A and AT from memory (see the roofline analysis in
Sec. IV-C1). We overcome this memory-bandwidth bottleneck
by reusing A elements from registers as we discuss next.

2) Register Reuse: Even with input buffering, the optimized
SpMV utilizes only less than two percent of the GPU’s theo-
retical peak compute throughput because of its low arithmetic
intensity (FLOPS/byte). This is because each fused multiply
add (FMA) requires two data elements from memory: (1)
shared-memory index of the visited voxel by X-ray and (2)
intersection length of the ray going through the voxel. To
increase the arithmetic intensity, we propose to reuse index and
value data from registers. That is, many SpMVs in a minibatch
are fused as AX = B, where each column of X and B
corresponds to a slice of tomogram and sinogram values in the
minibatch, respectively. As a result, the arithmetic intensity of
the operation increases by the fusing factor, a.k.a., minibatch
size. However, the fusing factor cannot be arbitrarily large
because fusing imposes register pressure as discussed next.

3) 3D Output Buffering: To provide data reuse from regis-
ter, each thread loads one index and one length at a time and
then reuses this pair from register for all corresponding output
voxels in the y direction of the minibatch. To accumulate the
partial sums, each thread allocates an output buffer (acc in
Line 10 of Listing 1). Line 28 shows how a thread reuses the
index and value pairs to access its corresponding data in the
3D input buffer. However, since each streaming multiprocessor
(SM) has a limited number of registers that are used by
all threads, enlarging the minibatch size, i.e., FFACTOR, can
increase the number of registers required by each thread and
hence elevate register pressure on the SMs. When threads
collectively use more registers than available in SM, register
contents are spilled to slower memory and hamper GPU
performance. Results show that GPUs are able to obtain 34%
of their theoretical compute throughput by carefully tuning the
minibatch size as shown in Sec. III-B

Listing 1: Optimized SpMM Mixed-Precision Kernel
1 //MATRIX STRUCTURE
2 struct matrix{ unsigned short ind; half len; };
3 //PROJECTION KERNEL
4 __global__ void kernel_project(half *y, half *x, matrix *mat,
5 int *displ, int numrow, int numcol,
6 int *buffdispl, int *buffmap,
7 int *mapdispl, int *mapnz,
8 int buffsize){
9 extern __shared__ half shared[];

10 float acc[FFACTOR] = 0.0;
11 int wind = threadIdx.x%WARPSIZE;
12 for(int buff = buffdispl[blockIdx.x]; buff <
13 buffdispl[blockIdx.x+1]; buff++){
14 int mapoffset = mapdispl[buff];
15 for(int i = threadIdx.x; i < mapnz[buff]; i += blockDim.x){
16 int ind = buffmap[mapoffset+i];
17 #pragma unroll
18 for(int f = 0; f < FFACTOR; f++)
19 shared[f*buffsize+i] = x[f*numcol+ind];
20 }
21 __syncthreads();
22 int warp = (buff*blockDim.x+threadIdx.x)/WARPSIZE;
23 for(int n = displ[warp]; n < displ[warp+1]; n++){
24 matrix mat = indval[n*WARPSIZE+wind];
25 float len = __half2float(mat.len);
26 #pragma unroll
27 for(int f = 0; f < FFACTOR; f++)
28 acc[f] += __half2float(shared[f*buffsize+mat.ind])*len;
29 }
30 __syncthreads();
31 }
32 int row = blockIdx.x*blockDim.x+threadIdx.x;
33 if(row < numrow)
34 #pragma unroll
35 for(int f = 0; f < FFACTOR; f++)
36 y[f*numrow+row] = __float2half(acc[f]);
37 }

4) Multi-Stage 3D Buffering: Each SM has a limited capac-
ity of shared memory (96 KB for V100 GPUs), which is not
enough for large memory access footprint of a 3D partition.
Therefore we provide access to input data in multiple stages.
Fig. 5: (c) and (d) show four-stage and three-stage bufferings
for projection and backprojection, respectively. Each stage
loads 96 KB data whose shapes are governed by Hilbert
ordering as described in Sec. III-A1. Line 12 in Listing 1
shows the iterations over stages, where only a portion of the
3D input buffer is loaded by mapping buffmap, and only
a partial value of the 3D output buffer is computed in each
stage. Because each staging has a synchronization overhead
(seen in Lines 21 and 30), fewer number of stages is desirable.
The 3D buffering strategy increases the number of stages
since memory footprint of input buffers grow with increasing
minibatch size (in the y direction). We mitigate increasing
memory footprint using mixed precision implementation as
explained in the following subsection.

C. Mixed-Precision Implementation

Mixed-precision implementation stores and communicates
data in half precision (16-bit) and performs all arithmetic
operations with single precision (32-bit) through in-core data
conversions as in highlighted in Listing 1 (red). This approach
reduces memory and communication footprint as well as
provides a higher GPU throughput by moving data in half-
precision while maintaining numerical accuracy by performing
FMAs in single-precision. Several issues need to be ad-
dressed while using mixed precision implementation: (1) Half-
precision has a lower range and quantization, and therefore it
can suffer from overflow and underflow. (2) When reading
sparse matrix A from memory, each warp of 32 threads
accesses only 64 bytes of data at a time, which only utilizes
half of the 128-byte GPU cache-line and therefore results in
sub-optimal cache utilization. We address these issues with
adaptive normalization and data packing, respectively.

1) Adaptive Normalization: We avoid the half-precision
underflows by artificially increasing the voxel size in the
tomogram. Since the nonzero sparse matrix values represent
the travel lengths of incident X-rays per voxel, increasing
the voxel sizes results in larger half-precision values and
hence avoids underflows. On the other hand, the overflows
are handled by maintaining input and output data in double
or single precision before performing kernel operations. We
accomplish this by normalization and denormalization of input
and output data before and after type castings, respectively.
The (de)normalization factor is adaptively changed in each
iteration with respect to the max-norm of the evolving input
vector to prevent overflows while minimizing underflows.

2) Data Packing: The underutilization of GPU cache line
not only wastes memory bandwidth but also introduces latency.
As a remedy, we pack both index and length data elements into
a single structure of four bytes. This structure is shown in Line
2 of Listing 1: It consists of an unsigned two-byte integer that
represents the voxel index in shared-memory, and a two-byte
half-precision floating point number representing the length.

Local Comm. within Sockets (1.35 GB) Local Comm. within Nodes (768 MB) Global Comm. between Nodes (492 MB) Send Recv.

Pr
oc

es
s

Volume (MB)
0 16 32 48

0

3

6

9

12

15

18

21

Direct Communications (1.35 GB)

MB

Send Recv.

Pr
oc

es
s

Volume (MB)
0 32

0

3

6

9

12

15

18

21

64 96 128 MB MB MB 64

Total M
PI Com

m
: 1.35 GB

Total M
PI Com

m
: 492 M

B

(a) (b) (c) (d)
Fig. 6: (a) Direct communication and load balancing. Three-level hierarchical communications: (b) Socket-level communication; (c) Node-
level communication; (d) Global communication and load balancing.

1

2

3
45

6

7 8
9

10

11

12

13 14
15

16

17
19

1820

21
22

230 0
1

2

3
45

6

7 8
9

10

11

12

13 14
15

16

17
19

1820

21
22

23

Tomogram Subdomains Sinogram Subdomains

!

"

!

"
(a) (b)

Fig. 7: Tomogram (a) and sinogram (b) subdomains. Partial data
footprint of tomogram subdomains 12–14 are shown in (b).

As a result, each warp of 32 threads utilizes the full 128-byte
cache line.

D. Hierarchical Communications

Data must be partitioned when solving large problems in
order to fit per-process memory footprint within available GPU
memory. However, data partitioning requires communication
and reduction of partial data, as elaborated in Sec. III-A4.
Consequently, image reconstruction time is dominated by
communication overhead for large problems. As a solution,
we propose a novel hierarchical communication with partial
data reduction, another major contribution of this paper. This
strategy is designed for multi-GPU node architectures where
high-bandwidth connections between peer GPUs are exploited.
This section describes direct communication of partial data
(the baseline), the main idea behind local communication and
reduction of partial data, our communication hierarchy, and its
efficient implementation.

1) Direct Communications: Fig. 7 shows partitioning of (a)
tomogram data and (b) sinogram data into 24 subdomains.
The subdomain shapes are governed by Hilbert-ordering do-
main decomposition (Sec. III-A1). In projection, each process
computes only a partial sinogram data which needs to be
communicated and reduced to find total sinogram data. As
an example, Fig. 7(b) shows the partial data footprints of
processes 12–14 on sinogram subdomains, e.g., process 12
sends its corresponding partial data to processes 8–13 and 18–
23. The resulting communication matrix is shown in Fig. 6(a).
Communication volume between two processes depends on

the amount of overlapped area between sender’s partial data
footprint and receiver’s sinogram subdomain. As a result,
the communication is sparse and irregular. Following the
communication, receiving processes reduce (sum) the over-
lapping partial data coming from sender processes, which
completes projection operation. This description is also valid
for backprojection as it is a transpose of projection.

Fig. 6(a) also shows communication volume of each pro-
cess and total amount of communicated partial data. Large
problems communicate a large portion of data through slow
interconnect between nodes, which constitutes a dominating
bottleneck. We relieve this bottleneck by reducing partial data
locally within nodes and communicating the reduced data
between nodes, as we shall discuss next.

2) Local Reduction of Partial Data: The proposed hier-
archical communication exploits high-bandwidth connections
between GPUs within nodes by a local communicator and
reduction of the overlapping partial data among sender pro-
cesses. To explain, we consider processes 12–14 (Fig. 7(a))
located in the same node. Overlapping portions of their partial
data (Fig. 7(b)) are communicated and reduced within the
node, rather than communicating the original partial data
among nodes directly. Then, the reduced partial data within
the node is sent to receivers by a global communication,
where they are further reduced to find total sinogram values.
The locality of subdomains provided by Hilbert ordering is
essential in this hierarchical communication because spatially-
local subdomains yield more overlapping data and more local
partial reductions. Similarly, fatter nodes with more highly-
connected GPUs yield more local reduction of partial data.

3) The Three-Level Hierarchy: This paper considers Sum-
mit’s node architecture, where each node has two CPU sockets.
Each socket is connected to three GPUs that are densely-
connected with high-bandwidth interconnect. The CPU sockets
within a node are connected with a slower data bus. Each
node is connected to an even slower infiniband network.
Although, we explain our hierarchical communication and
reduction in the context of the Summit architecture, the method
is general and applicable to other node architectures with
different number of sockets and GPUs.

Since the data bus between sockets is slow, we do not
perform local reduction directly among six GPUs within a
node. Instead, we first perform a socket-level communication
and reduction among three GPUs within a socket. Then, an

additional node-level communication and reduction among six
GPUs within a node. Finally, a global communication and
reduction among all GPUs between nodes is performed.

Fig. 6(b) presents the socket-level communication matrix
as a block-diagonal structure because each GPU talks only to
three GPUs (including itself) in the same socket. The socket-
level reduction reduces the original 1.35 GB partial data down
to 768 MB (43% reduction). Then, the reduced partial data is
further reduced within nodes among six GPUs. Fig. 6(c) shows
the intra-node local communication matrix. After the node-
level communication, the partial data is further reduced to 492
MB (36% additional reduction). Finally, GPUs send reduced
partial data only among nodes as shown in Fig. 6(d). As a
result, the total data communicated among slowly-connected
nodes is reduced by 64% compared to direct communication.

4) Efficient Implementation: To implement the pro-
posed three-level hierarchical communication, we leverage
MPI_Comm_split to define local communicators within
sockets and nodes, and a global communicator among nodes,
respectively. To prevent data from being staged through the
CPU during local communications, we use CUDA inter-
process communication (IPC) capability, i.e., communicating
data directly from GPU to GPU bypassing CPU. Furthermore,
local communications are overlapped using CUDA streams.
Then local reductions are performed on GPUs. Global commu-
nications are implemented with MPI with CPU staging through
pinned buffers. We employ non-blocking MPI_Issend and
MPI_Irecv for overlapping global communications. The
partial data is then moved back to the GPUs at the receiving
processes for global reductions.

Optimized SpMM

Local Socket Red.

Local Node Comm. (CUDA IPC)
Local Node Red.

Global Comm. (MPI)

Global Red

Minibatch 0

Minibatch 1

Projection Minibatch Backprojection Minibatch

Global Comm. (MPI)

Unpack

Local Node Comm. (CUDA IPC)
Unpack

Optimized SpMM

Minibatch 2

Minibatch 3

Projection Pipeline

Local Socket Comm. (CUDA IPC) Local Socket Comm. (CUDA IPC)

Backprojection Pipeline

Minibatch 0

Minibatch 1

Minibatch 2

Minibatch 3

Unpack

MPI CommSpMM

MPI CommSpMM

MPI CommSpMM

MPI CommSpMM

MPI Comm SpMM

MPI Comm SpMM

MPI Comm SpMM

MPI Comm SpMM

Local Comm.
& Reduction

Global Comm.

Wall Time

Fig. 8: Overlapping four minibatches in the batch processing pipeline.

E. Communication Overlapping

Even when communication time is reduced by applying
hierarchical communication strategy, iterative solution time
remains bounded by MPI communications for large prob-
lems (see Fig. 11). To further alleviate this communication
bottleneck, we propose an overlapping strategy that exploits
multiple slices in a reconstruction batch which is only possible
in 3D image reconstruction. That is, global (MPI) commu-
nication of a minibatch is overlapped with local operations
of another minibatch involving the optimized SpMM kernel,

local reduction kernels, and local (socket-level and node-
level) communications. Fig. 8 depicts overlapping of four
minibatches during projection and backprojection operations.
Projection overlaps global MPI communication of a minibatch
with local operations of the next minibatch. On the other hand,
backprojection overlaps local operations with next minibatch’s
MPI communication. This strategy is the most effective when
kernel time and communication time are comparable.

IV. EXPERIMENTAL RESULTS

This section introduces an extensive evaluation of our
approaches. We first evaluate the performance of our optimiza-
tions and designs on Summit supercomputer using four real-
world experimental datasets. Then, we investigate strong and
weak scaling properties of our system. Finally, we compare
convergence of our optimizations with four different levels of
precision.

A. Experimental Setup

1) Summit Supercomputer: All experiments are conducted
on Summit supercomputer at computing facility of ORNL.
Summit consists of 4,608 IBM AC922 nodes with two
POWER9 CPUs and six NVIDIA V100 GPUs per node. Nodes
are connected via dual-raid fat-tree network. Each CPU in
the node is densely-connected to three GPUs with Nvidia
NVlinks, where each link has 50 GB/s one-way and 100
GB/s bidirectional bandwidth. We refer to each CPU and
its corresponding densely-connected GPUs as a socket in
this paper. Each node consists of two sockets. Sockets are
connected via an X bus with 64 GB/s bidirectional theoretical
bandwidth. Each CPU has 22 cores and 250 GB memory and
each GPU has 80 SM and 16 GB memory.

TABLE II: Datasets and Memory Footprints
Measurement Data I/O Data Memory

Sample Cube (K×M×N) Footprint Footprint
Shale Rock 1501×1792×2048 52.1 GB 120 GB

IC Chip 1210×1024×2448 36.7 GB 139 GB
Activated Charcoal 4500×4198×6613 1.23 TB 2.82 TB

Mouse Brain 4501×9209×11 283 6.56 TB 10.9 TB

2) Datasets Used for Experiments: Table II characterizes
the four datasets used in our evaluation2. Dimensions are given
in K×M×N , where K denotes the number of projections
and M and N denote the number of vertical and horizontal
channels in the 2D detector grid, respectively. All measure-
ments follow parallel beam scan geometry as described in
Sec. II. The corresponding I/O data and memory footprints are
given for all datasets for single precision. All measurements
are obtained by experiments at APS, ANL. The Shale and
Charcoal datasets are open, while Chip and Mouse are
proprietary [2], [10], [11]. Even though IC Chip and Shale
have similar dimensions, we prefer to provide computational
performance for the freely available Shale for benchmarking
purposes. Nevertheless, we use IC Chip for the convergence

2In the rest of the paper, we refer to these datasets as Shale, Chip,
Charcoal, and Brain, according to their order in Table II.

0
500

1,000
1,500
2,000
2,500
3,000

0123456789101112131415

GF
LO

PS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
2
4
6
8

10
12
14
16
18

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee

du
p

Projection Backprojection
Optimized SpMM Kernel Speedup

Minibatch Size

Projection Backprojection
Optimized SpMM Roofline Analysis

Arithmetic Intensity (FLOPS/Byte)

Minibatch Size: 28

Minibatch Size: 18

Minibatch Size: 20

M
em

or
y B

/W
 B

ou
nd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minibatch Size: 28

Minibatch Size: 18

Minibatch Size: 20

M
em

or
y B

/W
 B

ou
nd

0

Double Single Half Mixed

(a) (b)
Fig. 9: (a) Speedup and (b) per-GPU performance of XCT-Optimized SpMM kernel as a function of the slice fusing factor, i.e. minibatch
size. Speedup is based on double-precision projection with no optimization (fusing factor 1).

TABLE III: Overall Reconstruction Speedup
Shale on Four Nodes Charcoal on 128 Nodes

Prec. Part.* Recon. Speed. Part.* Recon. Speed.

Part. Opt.
Double 1×(4×6) 979 s 1× 1×(128×6) 78.4 m 1×
Single 2×(2×6) 405 s 2.42× 2×(64×6) 31.3 m 2.51×
Mixed 4×(1×6) 215 s 4.56× 4×(32×6) 15.1 m 5.20×

Part.+
Kernel Opt.

Double 1×(4×6) 513 s 1.91× 1×(128×6) 58.4 m 1.34×
Single 2×(2×6) 134 s 7.30× 2×(64×6) 20.4 m 3.85×
Mixed 4×(1×6) 51.1 s 19.2× 4×(32×6) 8.0 m 9.78×

Part.+
Kernel+

Comm. Opt.

Double 1×(4×6) 218 s 4.49× 1×(128×6) 27.0 m 3.00×
Single 2×(2×6) 76.5 s 12.79× 2×(64×6) 10.0 m 7.87×
Mixed 4×(1×6) 42.2 s 23.19× 4×(32×6) 4.30 m 18.19×

*Total Number of Partitions = Batch Nodes × (Data Nodes × Partitions per node). Data partitions per
node is set to six because each node consists of six GPUs.

0
100
200
300
400
500
600
700
800
900

1,000

Part.
Opt.

+Kernel
Opt.

+Comm.
Opt.*

Part.
Opt.

+Kernel
Opt.

+Comm.
Opt.*

Part.
Opt.

+Kernel
Opt.

+Comm.
Opt.*

Double (1x4) Single (2x2) Mixed (4x1)

W
al

l T
im

e
(s

) Kernel Comm. Idle CG I/O

Shale Recon. on 4 Nodes (24 GPUs)

*Synchronized

(a)

0

10

20

30

40

50

60

70

80

Part.
Opt.

+Kernel
Opt.

+Comm.
Opt.*

Part.
Opt.

+Kernel
Opt.

+Comm.
Opt.*

Part.
Opt.

+Kernel
Opt.

+Comm.
Opt.*

Double (1x128) Single (2x64) Mixed (4x32)

W
al

l T
im

e
(m

)

Kernel Comm. Idle CG I/O

Charcoal Recon. on 128 Nodes (768 GPUs)

*Synchronized

(b)
Fig. 10: Breakdown of end-to-end reconstruction times for (a) Shale
and (b) Charcoal. *Overlapping does not applied (i.e., communi-
cations are synchronized) to measure each portion’s time.

results (Sec. IV-F) because it is a numerically challenging case
with contaminating noise.

B. Overall Reconstruction Performance

This subsection evaluates the overall reconstruction speedup
with our optimizations. Table III reports end-to-end recon-
struction time for Shale on four nodes and Charcoal

on 128 nodes. These are the minimum number of nodes
required to fit the corresponding memory footprints of double-
precision reconstructions. The first three rows report the result
without optimized SpMM, hierarchical communications, or
communication overlapping. We only optimize the baseline
implementation so that it uses the optimal combinations of
batch and data parallelism according to the level of precision
used for storing the data in memory. That is, lower precision
representations shrink the memory footprint, allowing more
batch parallelization and less data partitioning. As explained
in Sec. III-A3, data partitioning comes with communication
overhead and thus it is desirable to employ more batch paral-
lelism and less data partitioning. In this example, as shown in
Table III, we perform partitioning in node granularity, where
each node handles six data partitions (one per GPU). The
batch nodes partition slices in the 3D reconstruction domain
(data duplication, no communication) and data nodes partition
each slice (data partitioning, communication). The next three
rows apply kernel optimizations via optimized SpMM imple-
mentation (Sec. III-B). The last three rows apply hierarchical
communications (Sec. III-D) and overlapping (Sec. III-E).
As seen in Table III, overall speedup over double-precision
baseline is 23.19× and 18.19× for Shale and Charcoal
reconstructions, respectively.

To further study the effect of each optimization, Fig. 10
shows the breakdown of the end-to-end reconstruction time.
The communications are synchronized (i.e., not overlapped)
in order to accurately measure the time taken by each activity.
However, we do not synchronize GPU kernels and thus idle
time reflects the corresponding load imbalance. These results
show that optimized SpMM reduces kernel execution time
significantly in all cases. The performance of the kernel is
measured at 75 TFLOPS for Shale on four nodes (24 GPUs)
and 2.38 PFLOPS for Charcoal on 128 nodes (768 GPUs).
As shown in Fig. 10, execution time is dominated by commu-
nication for most of the cases. Hierarchical communications
reduce the communication time by more than 50% in all cases.
Sec. IV-C and Sec. IV-D further analyze the optimized SpMM
and communication optimizations in detail.

C. Optimized SpMM Performance

Fig. 9(a) shows optimized SpMM speedup with varied
minibatch sizes: Performance increases in all cases with
larger minibatching due to the aforementioned register reuse

TABLE IV: Communicated Data* and Effective System Bandwidth
Socket-Level Comm. Node-Level Comm. Global Comm. Memcpy

Prec. Data B/W Data B/W Data B/W B/W

Direct
Double 36.6 TB 1.61 TB/s 35.2 TB/s
Single N/A N/A 18.3 TB 1.61 TB/s 34.9 TB/s
Mixed 9.16 TB 1.59 TB/s 34.6 TB/s

Hierar.
Double 36.6 TB 174 TB/s 21.4 TB 21.3 TB/s 15.2 TB 1.58 TB/s 34.9 TB/s
Single 18.3 TB 170 TB/s 10.7 TB 22.8 TB/s 7.58 TB 1.55 TB/s 34.5 TB/s
Mixed 9.16 TB 164 TB/s 5.35 TB 23.5 TB/s 3.79 TB 1.49 TB/s 33.6 TB/s

*Per projection (and backprojection). Fig. 11 involves 30 projections and 31 backprojections.

provided by our optimized SpMM. However, the kernel per-
formance stagnates when minibatch size reaches around 16,
and then it drops with larger minibatch sizes. This is due
to a combination of register pressure and synchronization
overhead introduced by large minibatch sizes as discussed in
Sec. III-B. Nevertheless, minibatch sizes of 18, 28, 16, and
20 provide a maximum of 6.47×, 7.77×, 6.30×, and 6.58×
kernel speedup compared to no minibatching with double,
single, half, and mixed precision, respectively. Overall, mixed
precision achieves the best performance of 15.66× speedup
over the double precision baseline.

1) Roofline Analysis: To analyze the optimized SpMM
performance further, Fig. 9(b) shows the roofline analysis plot,
where the horizontal axis shows the arithmetic intensity, i.e.,
the number of floating-point operations per byte accessed from
memory, and the vertical axis shows the GFLOPS performance
per GPU. Each data point in the figure corresponds to one data
point in Fig. 9(a), where increasing minibatch size increases
the arithmetic intensity thanks to the data reuse from registers
(Sec. III-B). Lowering precision naturally increases arithmetic
intensity due to the less number of bytes per data element. Half
and mixed precisions yield the same arithmetic intensity. The
memory bandwidth bound (maximum performance possible)
with respect to the theoretical 900 GB/s memory bandwidth of
V100 GPU is included in Fig. 9(b). This figure shows that the
performance with small arithmetic intensities is well-bounded
by the memory bandwidth and starts to diverge when intensity
increases. This is mainly due to the synchronization overhead
of multi-stage input buffering.

Double and half precision performance start to degrade for
minibatch sizes larger than 18 because of the register spilling
as a consequence of the pressure incurred (see Sec. III-B3). On
the other hand, single and mixed precisions do not experience
register spilling up to a minibatch size of 50. This is mainly
because register usage is well optimized for single precision
unrolled FMAs (Line 26 of Listing 1). Nevertheless, perfor-
mance drops significantly at minibatch sizes of 28 and 20 for
single and mixed precisions, respectively. This sharp drop in
performance may be due to a change in compiler optimization
strategy to prevent register spilling by sacrificing performance
under a high register pressure. However, nvcc is proprietary,
preventing us from further investigation or verification. 16 is
set as the minibatch size for all our experiments since the
slices count is often a multiplication of 16.

2) Comparison with cuSPARSE: We compare our opti-
mized SpMM performance with cusparseSpMM, which uses

0

10

20

30

40

50

60

Direct Hierar. Overl. Direct Hierar. Overl. Direct Hierar. Overl.

Double (128x1) Single (64x2) Mixed (32x4)

W
al

l T
im

e
(m

) Kernel Socket-Level Comm.
Node-Level Comm. Global Comm.
Idle Memcpy

Charcoal on 128 Nodes (768 GPUs)

Fig. 11: Communication time breakdown, Charcoal on 128 nodes.

cuSPARSE library3. In order to find the best performance
of both implementations, we aggressively try all minibatch
sizes up to 50 and select the best ones. Our results show
that our optimizations provide 1.53× to 2.38× speedup for
double and single precision types, respectively. Unfortunately,
cusparseSpMM is not able to converge to a solution with
half precision type. Therefore we cannot make a direct com-
parison for other types. We are investigating the reason of this.

D. Communication Performance

To investigate communication optimizations further, Fig. 11
shows the breakdown of communication time for Charcoal
reconstruction on 128 nodes. Communication time with direct
and hierarchical communication strategies (Sec. III-D), and
total time with communication overlapping (Sec. III-E) are
investigated. Fig. 11 shows that hierarchical communication
reduces the total communication time by 52%. Communication
overlapping offers an additional speedup of 21% to 29% in
total execution time. As opposed to the example in Fig. 8,
Charcoal reconstruction has less overlapping opportunities
because the global communication dominates the execution,
bounding the overlapping efficiency.

Table IV shows the amount of communicated data in TB
and corresponding effective system bandwidth in different
levels of the communication hierarchy. Communication data is
naturally smaller in all cases with lower precision. Effective
system bandwidth is calculated by dividing communication
data amount by respective communication time shown in
Fig. 11. Table IV shows that the effective bandwidth within
each socket is about 100× faster than that among nodes.
Similarly, the effective bandwidth among sockets is 15× faster
than that among nodes. This high bandwidth within nodes
alleviates the local communication overhead for hierarchical
communications as seen in Fig. 11. Overall, hierarchical
communication reduces the communication among nodes by
58% for all precision types.

E. Scaling Performance

To investigate the scaling properties of the proposed applica-
tion, we perform two strong and one weak scaling experiments
with all optimizations applied. Communication overlapping is
disabled to correctly measure individual timings. All experi-
ments perform 30 CG iterations with mixed precision.

3https://developer.nvidia.com/cusparse

1) Strong Scaling: First, we scale 128 slices of Shale
up to 128 nodes. Fig. 12(a) shows the scaling results. This
experiment demonstrates the limited scalability when there
is a small number of slices. This experiment scales up to
only 128 nodes where each node reconstructs only one slice.
In the base case, there are eight minibatches (each contains
16 slices) so the solution can scale efficiently only up to
eight nodes (see III-A3). We need to reduce the size of the
minibatches after eight nodes to achieve more parallelism by
working on finer-granularity. However, SpMM performance
drops due to reduced data reuse from registers. As a result,
we scale up to 128 nodes (one slice per node) but the
performance is suboptimal due to the bottleneck of reduced
SpMM performance as shown in Fig. 12(a).

128 256 512 1024 2048 4096
Number of Nodes

Brain Strong Scaling
102

101

100

10-1

10-2

W
al

l T
im

e
(m

)

! 1/$

2.15
4.31

8.59
17.1

33.9
65.4*

*PFLOPS

1 2 4 8 16 32 64 128
Number of Nodes

100

10-1

10-2

10-3

W
al

l T
im

e
(m

)

! 1/$

10-4

4 2 1*
8

16

16
16

16
*Minibatch Size

Shale Strong Scaling (128 Slice)
102

101

100

10-1

W
al

l T
im

e
(m

)

10-2

1 16 256
Nodes

! %
&

Weak Scaling

1x6
2x48

4x384*

Partitioning*

SpMM Comm. Red. CG I/O Total

Number of Nodes

(a) (b) (c)
Fig. 12: Strong and weak scaling results: Shale and Brain datasets.

Fig. 12(b) shows the strong scaling result of Brain re-
construction from 128 nodes (the minimum number of nodes
that Brain fits) to 4096 nodes (89% of Summit). As opposed
to the previous experiment, there are 9209 slices in Brain
(see Table II) that allow us to scale without compromising
from SpMM performance. As a result, the total reconstruction
time is in agreement with O(1/P) curve, where P is the
number of nodes. The I/O performance starts to degrade at
1024 nodes because of the contention that parallel I/O puts
into the file system. Nevertheless, thanks to our proposed
optimizations, we reconstruct 3D Brain dataset in 2.5
minutes on Summit. To the best of our knowledge, this is
the largest XCT image reconstruction in near-real time. The
optimized SpMM kernel performance reaches 65.4 PFLOPS
on 24 576 GPUs (six GPUs per node): 34% of Summit’s
theoretical peak performance.

2) Weak Scaling: To investigate the weak scaling proper-
ties, we take Shale as the base dataset, and then synthetically
double each dimension in the aforementioned measurement
data cube (K×M×N). Each time we double all dimensions,
and the nominal computation (excluding the parallelization
overhead) increases by 16× (see Table I). Accordingly, we
increase the number of nodes 16× each time we double
measurement dimensions. As discussed in Table I, the memory
footprint increases by 8× at each step of the scaling. We
apply the suggested optimal partitioning strategy in Sec. III-A3
by partitioning data structures among eight nodes and slices

100

10-1

10-2

10-3

10-4

Re
si

du
al

 N
or

m

!"

−
$

% Iterative Convergence

0.40.350.30.250.20.150.10.050
Time (s)

24 Iterations (165 ms)

17 Iterations (166 ms)
10 Iterations (166 ms)

24 Iterations (163 ms)

24 Iterations (372 ms)

24 Iterations (224 ms)

Double Single Half Mixed

Fig. 13: Convergence speed for Chip with various precisions.

between two nodes. Fig. 12(c) shows the weak scaling results.
Since nominal computation per node remains the same, SpMM
time remains constant accordingly. However, communication
and I/O time increases and becomes the bottleneck for large
problems. I/O could be further optimized either by a custom
design or a high-performance library, which is beyond the
scope of this work.

F. Convergence Performance

To investigate iterative convergence rates, we reconstruct a
slice from Chip dataset. Since this dataset is noisy, iterative
solution experiences noise overfitting after 24 iterations and
even though the residual norm shrinks further, measurement
noise manifests into the image reconstruction. To prevent
that, we terminate the iterative solution after 24 iterations.
No serious convergence problem is observed with reduced
precisions. This is mainly because the numerical noise floor
is well below the measurement noise level—this applies to
other datasets as well. Fig. 13 shows the (relative) residual
norm for a single slice with respect to the execution time with
double, single, half, and mixed precisions. Mixed (and half)
precision performs 24 iterations in 165 ms, while single- and
double-precision implementations complete the same number
of iterations with 224 and 372 ms, respectively.

V. RELATED WORK

Tomographic reconstruction has been researched exten-
sively over the years. Iterative reconstruction algorithms usu-
ally show better image quality compared to analytical ap-
proaches [12]–[16] and have been used to accommodate
limitations on experimental dataset, e.g. noisy measurements,
missing angles and others [17]–[19].

Many parallelization techniques have been developed
to ease the computational requirements of iterative algo-
rithms, including distributed computing methods using multi-
core [20]–[23]. However, they found limited applicability for
large-scale dataset due to the computational requirements.

Many-core architectures, such as GPUs, have been widely
used for reconstruction small to medium dataset [24]–[26] and
received significant attention in recent years [4], [5], [27]–
[29]. Medical imaging is one of the areas that extensively uti-
lizes advanced tomographic reconstruction techniques. Since
limiting dose exposure to patients is crucial, iterative recon-
struction approaches are widely used to accommodate noisy

measurements [30]–[32]. Many-core systems can deliver the
computational throughput required by the reconstruction tasks,
however their limited memory and (host-device) communica-
tion cost can introduce significant overhead [33]. In contrast,
our solution provides mixed precision computations and multi-
level reduction techniques to ease communication cost.

Synchrotron radiation facilities can generate small to
extreme-scale data using variety of imaging modalities, includ-
ing tomography [34]–[36]. High performance software infras-
tructures have been built to handle tomographic reconstruction
workflows that require large-scale compute resources [37]–
[42]. The end-to-end performance of these systems heavily
relies on underlying reconstruction engines and can directly
benefit from the optimizations proposed in our work.

VI. CONCLUSION

In this work, we introduce novel optimization techniques
for MemXCT approach that exploit 3D volume properties and
multi-GPU node architecture during (back)projection opera-
tors. Specifically, our simultaneous data and batch partitioning
scheme provides configurable volume distribution among pro-
cesses and enables reconstruction of extremely large tomogra-
phy data; XCT-Optimized SpMM design considers the sparse
matrix structure and efficiently provides GPU utilization by
reusing data from shared-memory and registers; hierarchical
communications performs extra intra-node communications to
minimize the inter-node communication; and finally, effec-
tive use of mixed-precision types further reduces memory
footprint and communication volume while maintaining the
reconstruction quality. The algorithm design and optimizations
described in this paper enable an 11k×11k×9k 3D brain
image reconstruction under three minutes using 24,576 GPUs
on Summit supercomputer, reaching 65 PFLOPS: 34% of
Summits peak performance.

ACKNOWLEDGMENTS

This material was partially supported by the U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Com-
puting Research and Basic Energy Sciences, under Contract
DE-AC02-06CH11357. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725. We thank Narayanan (Bobby)
Kasthuri from UChicago/Argonne, and Rafael Vescovi and
Ming Du from Argonne for sharing the mouse brain dataset.
The mouse brain, IC chip, and activated charcoal data were
collected by Vincent De Andrade at beamline 32-ID, Ad-
vanced Photon Source, Argonne National Laboratory. This
work is supported by IBM-ILLINOIS Center for Cognitive
Computing Systems Research (C3SR). This research is based
in part upon work supported by the Center for Applications
Driving Architectures (ADA), a JUMP Center co-sponsored
by SRC and DARPA. This material is supported by funding

from the European Union’s Horizon 2020 research and in-
novation programme under the Marie Skodowska-Curie grant
agreement H2020-MSCA-COFUND-2016-754433.

REFERENCES

[1] “APS Science 2018,” Tech. Rep. ANL-18/40, ISSN 1931-5007, Ad-
vanced Photon Source, Argonne National Laboratory, January 2019.

[2] R. Vescovi, M. Du, V. de Andrade, W. Scullin, D. Gürsoy, and C. Ja-
cobsen, “Tomosaic: efficient acquisition and reconstruction of teravoxel
tomography data using limited-size synchrotron X-ray beams,” Journal
of Synchrotron Radiation, vol. 25, pp. 1478–1489, Sep 2018.

[3] T. Bicer, D. Gursoy, R. Kettimuthu, F. De Carlo, G. Agrawal, and
I. T. Foster, “Rapid tomographic image reconstruction via large-scale
parallelization,” in Euro-Par 2015: Parallel Processing, pp. 289–302,
Springer, 2015.

[4] M. Hidayetoğlu, T. Biçer, S. G. De Gonzalo, B. Ren, D. Gürsoy, R. Ket-
timuthu, I. T. Foster, and W.-m. W. Hwu, “Memxct: Memory-centric x-
ray ct reconstruction with massive parallelization,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–56, 2019.

[5] X. Wang, V. Sridhar, Z. Ronaghi, R. Thomas, J. Deslippe, D. Parkinson,
G. T. Buzzard, S. P. Midkiff, C. A. Bouman, and S. K. Warfield,
“Consensus equilibrium framework for super-resolution and extreme-
scale ct reconstruction,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pp. 1–23, 2019.

[6] A. Beer, “Bestimmung der absorption des rothen lichts in farbigen
flussigkeiten,” Ann. Physik, vol. 162, pp. 78–88, 1852.

[7] J.-H. Lambert, JH Lambert,... Photometria, sive de Mensura et gradibus
luminis, colorum et umbrae. sumptibus viduae E. Klett, 1760.

[8] R. A. Crowther, D. DeRosier, and A. Klug, “The reconstruction of
a three-dimensional structure from projections and its application to
electron microscopy,” Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, vol. 317, no. 1530, pp. 319–340,
1970.

[9] R. L. Siddon, “Fast calculation of the exact radiological path for a three-
dimensional ct array,” Medical Physics, vol. 12, no. 2, pp. 252–255,
1985.

[10] F. De Carlo, D. Gürsoy, D. J. Ching, K. J. Batenburg, W. Ludwig,
L. Mancini, F. Marone, R. Mokso, D. M. Pelt, J. Sijbers, et al., “To-
mobank: a tomographic data repository for computational x-ray science,”
Measurement Science and Technology, vol. 29, no. 3, p. 034004, 2018.

[11] M. Du, R. Vescovi, K. Fezzaa, C. Jacobsen, and D. Gürsoy, “X-
ray tomography of extended objects: a comparison of data acquisition
approaches,” JOSA A, vol. 35, no. 11, pp. 1871–1879, 2018.

[12] T. Bicer, D. Gürsoy, V. D. Andrade, R. Kettimuthu, W. Scullin, F. D.
Carlo, and I. T. Foster, “Trace: A high-throughput tomographic re-
construction engine for large-scale datasets,” Advanced Structural and
Chemical Imaging, vol. 3, p. 6, Jan 2017.

[13] K. Mohan, S. Venkatakrishnan, J. Gibbs, E. Gulsoy, X. Xiao,
M. De Graef, P. Voorhees, and C. Bouman, “Timbir: A method for time-
space reconstruction from interlaced views,” Computational Imaging,
IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[14] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-
play priors for model based reconstruction,” in Global Conference on
Signal and Information Processing (GlobalSIP), 2013 IEEE, pp. 945–
948, IEEE, 2013.

[15] P. P. Bruyant, “Analytic and iterative reconstruction algorithms in spect,”
Journal of Nuclear Medicine, vol. 43, no. 10, pp. 1343–1358, 2002.

[16] J. A. Fessler, M. Sonka, and J. M. Fitzpatrick, “Statistical image
reconstruction methods for transmission tomography,” Handbook of
medical imaging, vol. 2, pp. 1–70, 2000.

[17] S. Aslan, V. Nikitin, D. J. Ching, T. Bicer, S. Leyffer, and D. Gürsoy,
“Joint ptycho-tomography reconstruction through alternating direction
method of multipliers,” Optics express, vol. 27, no. 6, pp. 9128–9143,
2019.

[18] V. Nikitin, S. Aslan, Y. Yao, T. Biçer, S. Leyffer, R. Mokso, and
D. Gürsoy, “Photon-limited ptychography of 3d objects via bayesian
reconstruction,” OSA Continuum, vol. 2, no. 10, pp. 2948–2968, 2019.

[19] D. J. Ching, M. Hidayetoğlu, T. Biçer, and D. Gürsoy, “Rotation-as-
fast-axis scanning-probe x-ray tomography: the importance of angular
diversity for fly-scan modes,” Applied optics, vol. 57, no. 30, pp. 8780–
8789, 2018.

[20] J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein,
“Pushing the limits for medical image reconstruction on recent stan-
dard multicore processors,” International Journal of High Performance
Computing Applications, 2012.

[21] J. Agulleiro and J.-J. Fernandez, “Fast tomographic reconstruction on
multicore computers,” Bioinformatics, vol. 27, no. 4, pp. 582–583, 2011.

[22] M. Jones, R. Yao, and C. Bhole, “Hybrid MPI-OpenMP programming
for parallel OSEM PET reconstruction,” Nuclear Science, IEEE Trans-
actions on, vol. 53, pp. 2752–2758, Oct. 2006.

[23] C. Johnson and A. Sofer, “A data-parallel algorithm for iterative tomo-
graphic image reconstruction,” in 7th Symposium on the Frontiers of
Massively Parallel Computation, pp. 126–137, Feb 1999.

[24] A. Sabne, X. Wang, S. J. Kisner, C. A. Bouman, A. Raghunathan,
and S. P. Midkiff, “Model-based iterative CT image reconstruction on
GPUs,” in 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 207–220, ACM, 2017.

[25] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals,
K. J. Batenburg, and J. Sijbers, “The ASTRA Toolbox: A platform
for advanced algorithm development in electron tomography,” Ultra-
microscopy, vol. 157, pp. 35–47, 2015.

[26] X. Li, Y. Liang, W. Zhang, T. Liu, H. Li, G. Luo, and M. Jiang,
“cuMBIR: An efficient framework for low-dose x-ray CT image recon-
struction on GPUs,” in International Conference on Supercomputing,
pp. 184–194, ACM, 2018.

[27] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “Gpu-based iterative
medical ct image reconstructions,” Journal of Signal Processing Systems,
vol. 91, no. 3-4, pp. 321–338, 2019.

[28] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka, “ifdk:
a scalable framework for instant high-resolution image reconstruction,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–24, 2019.

[29] M. Hidayetoglu, C. Pearson, I. El Hajj, L. Gurel, W. C. Chew, and
W. Hwu, “A fast and massively-parallel inverse solver for multiple-
scattering tomographic image reconstruction,” in 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp. 64–
74, 2018.

[30] D. Lee, I. Dinov, B. Dong, B. Gutman, I. Yanovsky, and A. W.
Toga, “CUDA optimization strategies for compute-and memory-
bound neuroimaging algorithms,” Computer Methods and Programs in
Biomedicine, vol. 106, no. 3, pp. 175–187, 2012.

[31] C.-Y. Chou, Y.-Y. Chuo, Y. Hung, and W. Wang, “A fast forward
projection using multithreads for multirays on GPUs in medical image
reconstruction,” Medical Physics, vol. 38, no. 7, pp. 4052–4065, 2011.

[32] B. Jang, D. Kaeli, S. Do, and H. Pien, “Multi GPU implementation of it-
erative tomographic reconstruction algorithms,” in Biomedical Imaging:
From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,
pp. 185–188, IEEE, 2009.

[33] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic CPU-GPU communication management and
optimization,” in ACM SIGPLAN Notices, vol. 46, pp. 142–151, ACM,
2011.

[34] D. Gürsoy, T. Biçer, A. Lanzirotti, M. G. Newville, and F. De Carlo,
“Hyperspectral image reconstruction for x-ray fluorescence tomogra-
phy,” Optics express, vol. 23, no. 7, pp. 9014–9023, 2015.

[35] D. J. Duke, A. B. Swantek, N. M. Sovis, F. Z. Tilocco, C. F. Powell,
A. L. Kastengren, D. Gürsoy, and T. Biçer, “Time-resolved x-ray tomog-
raphy of gasoline direct injection sprays,” SAE International Journal of
Engines, vol. 9, no. 1, pp. 143–153, 2016.

[36] D. Gürsoy, T. Biçer, J. D. Almer, R. Kettimuthu, S. R. Stock, and
F. De Carlo, “Maximum a posteriori estimation of crystallographic
phases in x-ray diffraction tomography,” Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 373, no. 2043, p. 20140392, 2015.

[37] T. Bicer, D. Gursoy, R. Kettimuthu, I. T. Foster, B. Ren, V. De Andrede,
and F. De Carlo, “Real-time data analysis and autonomous steering of
synchrotron light source experiments,” in 2017 IEEE 13th International
Conference on e-Science (e-Science), pp. 59–68, IEEE, 2017.

[38] R. J. Pandolfi, D. B. Allan, E. Arenholz, L. Barroso-Luque, S. I.
Campbell, T. A. Caswell, A. Blair, F. De Carlo, S. Fackler, A. P.
Fournier, et al., “Xi-cam: a versatile interface for data visualization and
analysis,” Journal of synchrotron radiation, vol. 25, no. 4, pp. 1261–
1270, 2018.

[39] T. Bicer, D. Gürsoy, R. Kettimuthu, F. De Carlo, and I. T. Foster, “Op-
timization of tomographic reconstruction workflows on geographically
distributed resources,” Journal of synchrotron radiation, vol. 23, no. 4,
pp. 997–1005, 2016.

[40] D. Morozov and T. Peterka, “Block-parallel data analysis with diy2,” in
2016 IEEE 6th Symposium on Large Data Analysis and Visualization
(LDAV), pp. 29–36, 2016.

[41] O. Yildiz, J. Ejarque, H. Chan, S. Sankaranarayanan, R. M. Badia,
and T. Peterka, “Heterogeneous hierarchical workflow composition,”
Computing in Science Engineering, vol. 21, no. 4, pp. 76–86, 2019.

[42] Z. Liu, T. Bicer, R. Kettimuthu, and I. Foster, “Deep learning accelerated
light source experiments,” in 2019 IEEE/ACM Third Workshop on Deep

Learning on Supercomputers (DLS), pp. 20–28, IEEE, 2019.

	I Introduction
	II Background
	II-A Tomography Experiments
	II-B Challenges and Opportunities

	III Algorithm Design & Optimizations
	III-A Partitioning and Parallelization
	III-A1 Hilbert-Ordering Domain Decomposition
	III-A2 Batch Processing Pipeline
	III-A3 Optimal Partitioning Strategy
	III-A4 Computational Complexity

	III-B XCT-Optimized SpMM Design
	III-B1 3D Input Buffering
	III-B2 Register Reuse
	III-B3 3D Output Buffering
	III-B4 Multi-Stage 3D Buffering

	III-C Mixed-Precision Implementation
	III-C1 Adaptive Normalization
	III-C2 Data Packing

	III-D Hierarchical Communications
	III-D1 Direct Communications
	III-D2 Local Reduction of Partial Data
	III-D3 The Three-Level Hierarchy
	III-D4 Efficient Implementation

	III-E Communication Overlapping

	IV Experimental Results
	IV-A Experimental Setup
	IV-A1 Summit Supercomputer
	IV-A2 Datasets Used for Experiments

	IV-B Overall Reconstruction Performance
	IV-C Optimized SpMM Performance
	IV-C1 Roofline Analysis
	IV-C2 Comparison with cuSPARSE

	IV-D Communication Performance
	IV-E Scaling Performance
	IV-E1 Strong Scaling
	IV-E2 Weak Scaling

	IV-F Convergence Performance

	V Related Work
	VI Conclusion
	References

