Tomographic Reconstruction of Dynamic Features
with Streaming Sliding Subsets

Tekin Bicer*t8, Viktor Nikitinf, Selin AslanT, Doga Gl'irsoyT, Rajkumar Kettimuthu*$, Tan T. Foster*}

*Data Science & Learning Division and TX-Ray Science Division, Argonne National Laboratory
{tbicer, vnikitin, saslan, dgursoy, kettimuthu, foster} @anl.gov
iDepartment of Computer Science and §Consortium for Advanced Science and Engineering, University of Chicago

Abstract—As the sophistication and speed of today’s X-ray ex-
periments grow, collecting the most informative data has become
ever more relevant, necessitating the development of algorithms
that can provide good quality reconstructions from tomographic
data streams. However, almost all conventional reconstruction
systems and algorithms work exclusively offline, requiring that
complete datasets be collected and available before they can be
processed.Further, these systems and algorithms provide limited
consideration and support for challenging experiments, such as
imaging samples with dynamic features, where both spatial and
temporal properties of the features rapidly change.

We describe here a high-performance runtime system for
analyzing and reconstructing streaming tomography datasets
using sliding subsets of projection images, and evaluate the
reconstruction quality of dynamic features with respect to dif-
ferent runtime configuration parameters using phantom and
real-world tomography datasets. Our system enables runtime
system parameters to be adjusted dynamically over the course
of experiment, providing opportunities for balancing the quality
and computational demands of tasks, better observation of
phenomena, and improving advanced experimental techniques
such as autonomous experimental steering.

Index Terms—Tomography, stream processing, dynamic fea-
tures, image reconstruction

I. INTRODUCTION

Synchrotron light sources are crucial tools for address-
ing grand challenge problems in life sciences, energy, cli-
mate change, and information technology [1, 2]. High-quality,
timely data analysis and feedback are not only crucial for
advancing these sciences but also important for reliable ex-
perimentation, correct data acquisition, and efficient utilization
of instruments. Some synchrotron radiation experiments can
have extremely complex setups and target samples, and may
require advanced imaging techniques, such as the imaging
of samples with dynamic features [3] using high-speed time-
resolved tomography [4]. Current data analysis pipelines for
such experiments run only after data acquisition is completed,
and on small, often local computers with preset configuration
parameters. The resulting delay between data collection and
(offline) analysis, together with predefined runtime parameters,

This material was partially supported by the U.S. Department of En-
ergy, Office of Science, Advanced Scientific Computing Research and Ba-
sic Energy Sciences, under Contract DE-AC02-06CH11357. We gratefully
acknowledge the computing resources provided on Bebop (and/or Blues), a
high-performance computing cluster operated by the Laboratory Computing
Resource Center at Argonne National Laboratory.

prevents high-quality data acquisition and real-time exper-
imental decision making, compromising timely insights on
collected data and researcher productivity.

The need for analysis software that can accommodate large-
scale experimental data will increase significantly in the near
future. For example, tomography experiments at Advanced
Photon Source (APS) imaging beamlines can produce data
at more than 8 Gbps today, while generating hundreds of
raw measurements (projections) per second [5]; the imminent
APS upgrade will provide x-rays with 100-1000 times more
brightness compared to today’s light source [1,2], which
are expected to increase the data generation rate at micro-
computed tomography (microCT) beamlines by at least 2-3
times compared to current rates.

Tomographic reconstruction, typically the main processing
step for tomography experiments, may be performed with
analytical or iterative techniques. The two classes of technique
can be compared as follows: Analytical techniques, e.g.,
filtered-backprojection, are computationally more efficient,
but are typically more sensitive to noise and environmental
factors, such as dose, vibration, drifts, and motion. Further,
they more data for good quality reconstructions. In contrast,
iterative techniques can use statistical models that can work
with limited data and are more resilient to noise [6], but
are computationally more expensive due to their iterative
nature [7, 8].

Existing tools have been developed for analysis of x-ray to-
mographic data [9, 10] provide sufficient capabilities for small-
to medium-scale offline data analysis, but do not support the
high-performance reconstruction required for large datasets.
Furthermore, they provide limited or no support for analysis of
streaming tomography datasets with dynamic features, such as
a sample with foam features that expand (or shrink) and appear
(or disappear) over a period of time [11, 12]. The (real-time)
analysis of such datasets is challenging for several reasons.
First, since the spatio-temporal properties of the sample change
over time, the whole dataset does not represent a stable state
of the features and therefore regular reconstruction approaches
cannot be applied directly. Second, if the experimentation is
long running, the collected dataset can be extremely large
(hundreds of TBs or even PB-scale in some cases) and
impossible to analyze as a whole.

In the work reported here, we explore a new approach
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Fig. 1. Schematic of a typical tomographic data acquisition and reconstruction pipeline. The experiment can be controled with a feedback loop after analyzing

reconstructed image.

to the reconstruction of samples with dynamic features that
allows for streaming analysis with fine-grained control, via
setting of configuration parameters, over both reconstruction
quality and computational costs. We describe the configuration
parameters and show their effect on both reconstruction qual-
ity and computational costs. The runtime system parameters
can be be adjusted dynamically during the experimentation,
providing opportunities for balancing the quality and computa-
tional requirements of tasks, better observation of phenomena,
and improving advanced experimentation techniques such as
autonomous experimental steering.

II. BACKGROUND

We first introduce the computed tomography (CT) image
analysis pipeline used at synchrotron light sources and then
discuss the dynamic feature imaging and reconstruction.

A. Tomographic Data Acquisition and Reconstruction

In Fig. 1, we present the tomography experimental setup
and its corresponding data acquisition process, sinogram
generation, and reconstruction stages. During a tomography
experiment, the target sample is placed on a rotation stage
and illuminated by an X-ray source. As generated X-rays
pass through the sample, they attenuate according to the
thickness and density of the target sample. For high-density
samples, X-ray attenuates more and therefore results in low
readings compared to low-density samples. The photons are
then measured by a photon detector.

The corresponding measurement is called a projection. Dur-
ing a tomography experiment, a set of projections is collected
from different rotations, 6, with typically a fixed exposure time
for each. An ideal experiment collects projections that fully
cover the sample.

The attenuation of X-ray intensity is modeled according
to Beer-Lambert law, Iy(s) = Iy(s)exp[—pp(s)], where
Iy(s) is the incident x-ray illumination on the sample and
Iy(s) are the collected measurements at a number of s,
as a result of a tomographic scan. py(s) represents a cross
section of projections (shown in red in the central section of
Fig. 1), known as a sinogram. For parallel beam geometry,
measurements in a sinogram correspond to a cross section of
the target sample.

The tomographic reconstruction process aims to recover 2D
cross section images of a sample from their corresponding

sinograms. Iterative reconstruction techniques aim to solve
# = argmin ||y — Az||?> + R(x), where # is the reconstructed
zeC

tomogram, A is the forward model, y is the sinogram, R(x)
is a regularizer functional, x is the search variable, and C' is
a constraint on z.

Iterative reconstruction techniques consist of three steps, as
depicted in the last phase of Fig. 1. First, a forward model is
applied to an intermediate image estimate in order to find a
measurement. Then, the estimated and real measurements are
compared. Finally, the estimated image is updated according to
the difference between the real and estimated measurements.
These steps are repeated until a user-defined constraint is met,
such as total number of iterations or error threshold.

Iterative techniques can provide better reconstructions com-
pared to analytical techniques for dynamically evolving fea-
tures [12,13]. They are also more suitable for real-time
reconstruction of samples with limited data, if computational
resources are sufficient [14, 15].

III. OUR CONFIGURABLE RECONSTRUCTION SYSTEM

We now introduce our high-performance system for recon-
structing streaming tomography data with dynamic features in
real-time and explain its configuration parameters.

A. System Design

Our data analysis pipeline, shown in Fig. 2 consists of
two components: load balancer and runtime engine. The load
balancer chunks the incoming (or generated) projections to
sinograms and forwards them to their corresponding processes;
the runtime engine reconstructs the incoming projections ac-
cording to parameters set by the user. We further explain these
components in the following sections.

Load Balancer: As shown in Fig. 2, the load balancer (LB)
receives projections from experimental setup. Each incoming
projection is split according to the total number of rows and
processes in the system. For example, if the dimensions of an
incoming projection is (2048, 2048) pixels and there are 4 run-
ning processes, then the projection is split into 4 chunks where
each chunk’s dimension is (512, 2048). Note that the chunking
is based on the rows, so that each process receives the same
sequence of rows (sinograms) throughout the processing. Load
balancer uses synchronous communication (with ZMQ) to
guarantee all the rows are orderly delivered to processes. Our
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Fig. 2. The components of high-performance runtime system for streaming tomography dataset. Window size, step size and number of iterations are shown
with w, s and ¢, respectively. fiw() and bk() functions represent forward and backprojection operators.

load balancer can also perform light weight preprocessing
steps, such as dark and white field normalization, though these
steps can easily be pushed to reconstruction processes.

Runtime Engine: After chunking the incoming projections,
they are forwarded to the runtime engine. This component
performs the computationally demanding tasks for the re-
construction, in particular forward and backprojection oper-
ations (shown as fw() and bk() in Fig. 2). Runtime system
provides several preimplemented iterative reconstruction algo-
rithms, including simultaneuous iterative reconstruction tech-
nique (SIRT), Maximum-likelihood Expectation Maximization
(MLEM) and Penalized Likelihood Method (PML), that are
ported from the TomoPy Python library [9]. The runtime
engine also exposes several APIs for users to implement
their own algorithms. Specifically, it uses reduction-based
processing structure for high-performance implementation of
forward and backprojection operators [16]. This processing
structure mimics that of MapReduce [17-20], where users can
plug-and-play their algorithms, and that scales efficiently to
tens of thousands of cores [21,22].

The runtime system processes use two levels of paralleliza-
tion: process and thread level. The process-level paralleliza-
tion, based on MPI, is used for coarse-grained load balancing
as mentioned in LB. Thread-level parallelization, on the other
hand, performs fine-grained shared-memory parallelization.
These two levels of parallelization enables the runtime system
to perform efficient local thread-level and global process-level
reduction and synchronization operations.

Besides the number of processes and threads in the system,
several configuration parameters and data structures are ex-
posed to users. These configuration parameters can be used
to adjust both computational demands and the quality of the
reconstructed images. We focus here on the following three
parameters, depicted in Fig. 2.

o Window size, w, is the number of projections used in
each reconstruction. This determines the size of a sliding
(window) buffer in the runtime system to store incoming
projections. For example, if w = 32, only the last 32
projections are stored and used for reconstruction.

o Step size, s, is how often reconstructions are computed.
The reconstruction operations are triggered according
to this parameter. For example, if s 1 then the
reconstruction is initiated after every projection. However,

if s 2 then reconstruction is triggered after every
other projection. Note that the runtime system uses all
projections in its buffer.

e Iterations, 7, is the number of iterations in a reconstruc-
tion. This parameter determines how many times the
forward and backprojection operators are applied to the
object function.

Different (w, s,¢) combinations are appropriate for dynamic
data with different spatio-temporal properties. We evaluate
these parameters and show their resulting reconstructions with
different dynamic features in the following section.

IV. EXPERIMENTAL RESULTS

We evaluate our system in the context of the parallelized
simultaneous iterative reconstruction technique (SIRT) [9]. We
use SIRT to reconstruct two different datasets for a range of
different runtime configuration parameters, and report on how
different configuration parameter values effect the quality of
the resulting reconstructed image.

The two datasets that we use to evaluate our system are
(1) a phantom dataset, and (2) a foam dataset collected at
the MAX IV Laboratory of Lund University, Sweden using
fast X-ray tomographic microscopy [11,23,24]. Each dataset
contains features of different sizes and shapes that change
over time in different ways (e.g., grow, shrink, move) and at
different rates. These different properties can introduce varying
artifacts in reconstructions.

The reconstructed image quality depends on the rate of
change in features. Since the reconstruction algorithms re-
quire sufficient data to recover features, reconstructions with
dynamic features require more measurements compared to
samples with static features.

We reconstructed images by using the Trace high-
performance computing middleware [16,21] for different sets
of configuration parameter (w, s, ¢), where both w and s
ranged from 1 to 32, and 7 ranged from 1 to 10. Computational
costs scale roughly linearly with each of w, s~1 and i;
thus configuration (32, 1, 32) involves roughly 323 more
computation than configuration (1, 32, 1).

A. Phantom Dataset

The phantom dataset comprises 6480 projections—36 full
rotations, each with 180 projections, spaced equally in time—



Fig. 3. Two 2-D slices from the phantom dataset ground truth. (a) shows the
initial position of the circles (projection 0), and their motion; (b) shows their
final location (projection 6479). The bottom figure shows the 6480-sinogram

dataset corresponding for these slices.
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Fig. 4. Impact of configuration parameters on reconstruction errors for the
moving circle, for 1 = 1 and different w and s. Upper middle shows ground
truth for projection 3240; blue line indicates the pixel values that are used to
compute error rates: see text. Right top shows reconstructions with w = 32.
Right bottom shows how pixel values change for the same configuration and
also with ground truth.

generated synthetically from a simulated environment contain-
ing two circular features, one smaller and one larger, which
expand and move over time, respectively, as shown in Fig. 3.
The number of pixels in each projection row is 512, resulting
in a reconstructed image slice of size 512x512. The rate of
change in both features is constant; that is, the speeds of
expansion and movement are fixed during the simulation. The
radius of the expanding circle changes from ~51 to ~102
pixels during the 6480-projection data acquisition process: a
rate of 51/6480 = 7.87x1072 pixel changes per projection
acquisition. The second circle moves ~375.46 pixels: a rate
of 375.46/6480 = 5.79x 10~2 pixels per projection.

We first study the impact of configuration parameters on
reconstruction error for the small (moving) circle. Fig. 4 (left)
shows errors for w € {4,8,16,32} and s € {1,2,4,8, 16,32},
with ¢ = 1 in all cases. Since w determines the number of
projections that are used for reconstruction and the runtime
system works with only limited data at any given time, the
reconstructions (moving features and background) are exposed
to noise. Consequently, conventional quality metrics such
as SSIM, PSNR and SNR cannot rovide reliable results.
Instead, we compute error as ”T‘;ﬁ” 2 where x and z are
from the reconstructed and ground truth pixel values on a line
with direction aligned with the feature’s trajectory and length
(shown in blue in the figure). The lengths of the lines are
selected according to the features’ artifacts and set to ~90 and
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Fig. 5. Error rates of small moving circle with respect to number of iterations.
The error rates are based on line e in Fig. 4. All configuration parameters
are varied. Right figures show the line profiles of e for given configuration
parameters.

~70 pixels for small (moving) and large (expanding) circles,
respectively.

We see that error rates improve with decreasing w for all
configurations, indicating that smaller window sizes provide
better spatio-temporal information and thus higher image qual-
ity. Note that as computational costs decrease linearly with w,
smaller w also reduces computational requirements. For each
value of w, smaller s significantly improves error rate. For
instance, in the (32, s < 32, 1) configurations, error rates range
over 33.6-65.6%, with (32, 1, 1) having the lowest error. In the
right top of Fig. 4, we show the reconstructed images with (32,
s < 32, 1) for projection 3240; in the bottom right, we show
the values along the blue line for different configurations, plus
ground truth (GT) values in pink. As expected, GT changes
rapidly between empty space and circle, reflecting the change
from pixel value O to 1. The s = 1 configuration matches GT
most closely and s = 32 the least.

So far we have considered only configurations with 7 = 1.
Fig. 5 shows the effect of increased iterations on small circle
reconstruction quality. We consider ¢ € {1,5,10} and a range
of w and s values. The relative errors in range over 30—
65.5%, with the lowest and highest being for the (4, 1, 1)
and (32, 32, 1) configurations, respectively. This indicates that
for this moving circle feature, the best reconstruction quality
is delivered with frequent updates on the reconstructed object
using a small number of projections and iterations. We also
observe that increased iterations benefit the larger window
sizes the most. For instance, the (32, 1, 10) configuration has
a 31% relative error compared to GT, i.e., less than 1% more
than the best configuration (4, 1, 1). The line profiles in the
figure show the effect of iterations on large window size and
step sizes, in which increased iterations result in the closest
match to GT (red). Note that, the same observation is not
true for the small window sizes, i.e. (4, 1, ¢« < 10), in which
the reconstruction quality drops with increasing number of
iterations. This shows that more computation does not always
translate to better reconstructions.

Next we study the large (expanding) circle. Figs. 6 and 7
show results for ¢ = 1 and varying w and s values. As this
circle expands throughout the simulation, the reconstruction
parameters provide slightly different quality results compared
to the moving small circle.
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Fig. 6. Error rates and line profiles of big expanding circle with respect to
window size (w) and step size (s) with one iteration (¢ = 1).

Fig. 6 shows how error rates vary with w and s when
i = 1. The error rates range from 25.8% to 7.5%, with
configurations (32, 32, 1) and (4, 1, 1) providing the worst
and best reconstruction qualities, respectively. As in the small
circle case, smaller w and s values enhance quality. For
example, (32, 1, 1) reduces reconstruction error from 25.8%
to 9.96% relative to (32, 32, 1). The line profiles in Fig. 6
illustrate the effect of s on pixel values. As in the small circle
case, configuration (32, 1, 1) shows the closest correlation with
GT.

When we also vary ¢, we observe a different behavior than
in the small moving circle case. The large expanding circle, in
contrast to the small moving circle, benefits from additional
iterations even for small window sizes. For instance, the best
configuration (4, 1, 10), has an error 20.2% better than that
of (4, 1, 1): 7.5% rather than 9.4%. Similarly, the error for
(16, 16, 10) is only 11.2%, while that for (16, 16, 1) is
21.3%. Increased iterations also decrease the error rate from
10% for (32, 1, 1) to 7.7% and (32, 1, 10): on par with
the quality configuration. In summary, large expanding circle
benefits from more iterations in all configurations, unlike the
moving small circle (4, 1, *) configurations.

Overall, two key observations from these experiments are
(i) more computation does not always improve reconstruction
quality, e.g., (4, 1, 1) vs. (4, 1, 10) in moving small circle; and
(ii) the effect of configuration parameters depends on the fea-
tures’ spatio-temporal properties, e.g., the best qualities for the
moving small circle and expanding large circle are observed
with (4, 1, 1) and (4, 1, 10) configurations, respectively.

B. Foam Dataset

The second dataset is a real-world experimental dataset, in
which complex liquid foam features both expand (or shrink)
and appear (or disappear), depending on the environmental
conditions. During the experiment, the rate of changes in
features, and thus reconstruction difficulty, increases as the
experiment progresses.Projections are collected at 840°/sec
with 0.7 ms exposure time, resulting in 130 rotations—each
representing a time frame. The resulting dataset has dimen-
sions (2016, 300x130, 1800), where 300 is the number of
projections over [0, 7). The resulting dataset has size 590 GB.

As with the first dataset, we reconstruct the foam dataset
with different parameter configurations. Lacking ground truth,
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Fig. 7. Error rates and line profiles of big expanding circle with respect to
different ¢ when w=(32, 16, 4) and (s < 32).

we present the reconstructed images, along with their line
profiles. Fig. 8 shows our reconstructions. The left box shows
the reconstructions with respect to time. Specifically, the left
image shows the reconstruction of a slice from the whole
foam dataset at the beginning of the experiment with (32, 1,
1). Since the motion of the features in the sample is limited,
we do not observe much artifact. The next image shows the
reconstructions of a specific region (red rectangle) from the
same sample with different configuration parameters as the
experiment progress. Specifically, the y-axis shows the system
configuration, similar to previous set of experiments, and the x-
axis shows time, e.g., 2t/4 and ¢ represent the reconstructions in
the middle and at the end of the experiment, respectively. For
all configurations, as the experiment progresses the motion ar-
tifacts increase. The (32, 32, 1) configuration is affected more
than the others. The main reason of this is this configuration
performs a single pass over the incoming projection stream and
therefore carries (or copies) previously reconstructed features
more compared to other configurations. Focusing on the (32,
1, 1) configuration, we see that the features are easier to
distinguish; however, there are still some artifacts due to the
fast moving features.

We further analyze the effect of motion artifacts with differ-
ent configurations in the right box in Fig. 8. Complementary
to the experiments in left box, we focus more on the number
of iterations. We only show the reconstructions at the end
of the experiment (¢ time), since this is when the maximum
amount of motion artifacts are encountered. We see that each
configuration presents different properties. For example, if
we compare (32, 32, x) configurations, first column, we see
that the number of iterations significantly help reconstruction
quality. On the other hand, the more number of iterations
starts introducing salt-and-pepper like artifacts for (32, 1,
x) configurations. The main reason for this is that the total
number of updates is 32x more when we compare (32, 1, *)
to (32, 32, x) (because of the step size parameter s). Iterations
further increase the number of updates and contribute to
the salt-and-pepper artifact, e.g., configuration (32, 1, 10)
performs 32 x 10 = 320 more updates than the configuration
(32, 32, 1).

The line profiles of each iteration configuration is given in
the right most figure (organized with respect to rows). The
profiles show the pixel values of the lines on images. The
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Fig. 8. Reconstruction results for foam dataset. Left: Reconstructions of a single slice with respect to time and different configuration parameters (for the
region specified with red rectangle). Right: Effect of iterations with line profiles.

lines are color coded to represent each (w,s) on x-axis. As
the number of iterations increases the contrast between the
features and the background increases, these can be observed
with the maximum and minimum pixel values. We also see
artifacts with high ¢ and low s values similar to previous set
of experiments.

C. Understanding the Computational Requirements

The computational complexities of the reconstruction opera-
tions vary depending on the selected configuration parameters.
In general, w and ¢ have a linear effect on computation (c),
whereas s is inversely proportional: ¢ « (w X %)/s. Although
higher computational operations typically translate to better
reconstructions, this is not guaranteed. For example, (4, 1,
1) provides the best quality for the large expanding circle in
the phantom dataset, which, in turn, requires almost 80x less
computation compared to (32, 1, 10).

Our stream reconstruction system enables users to balance
between computational cost (system responsiveness) and re-
construction quality so that users can adjust the parameters
depending on the goal of the application.

V. RELATED WORK

Reconstruction of dynamic features from tomography
datasets has been an active research area [25-27]. Nikitin
et al. developed a tomographic reconstruction method that
decomposes dynamic tomography datasets in the temporal
domain by projecting to a lower dimensional subspace of
basis functions and deploying an additional L1 regulariza-
tion technique [12]. Mohan et al. introduced a model-based
iterative reconstruction method that can recover time-resolved
volumes from 4D tomography datasets with interlaced view
sampling [13, 28]. Complementary to these efforts, we evaluate
the spatio-temporal properties of dynamic features and the re-
construction performance with our high-performance runtime
system and its configuration parameters.

Large-scale experimental data generation at synchrotron
light sources and their unique and challenging experimental
conditions make it extremely difficult to develop efficient and
generic software tools; therefore, many projects have been
initiated to address the data management problems in the
context of light sources. The Center for Advanced Mathe-
matics for Energy Research Applications (CAMERA), which
is lead by LBNL, has initiated several projects to address
these issues [29, 30]. Similarly, other synchrotron light sources

have adapted or started developing their own visualization,
workflow management and analysis tools, including [31] from
ANL and [32] from Diamond, ESRF and EMBL. Among these
efforts, real-time high-performance tomographic reconstruc-
tion frameworks and enhancement techniques have received
significant attention [33-38]. Our work utilizes Trace frame-
work [16,21] that performs high-performance reconstruction
techniques using fine-grained parallelization and reduction-
based processing structure.

Iterative reconstruction approaches have been successfully
used on many tomography data [39-43]. Although, the com-
putational requirements of iterative approaches are much
more demanding than the analytical counterparts, advanced
parallelization techniques, coupled with large-scale clusters
and supercomputers, enabled their usage on medium to large
experimental datasets [44—48].

VI. CONCLUSIONS

We have evaluated the effect of runtime system parameters
on reconstruction quality of streaming tomographic data from
experiments with dynamic features. Working with a synthetic
phantom and an experimental foam sample, we varied three
runtime system configuration parameters, window size, step
size, and number of iterations, to generate different reconstruc-
tions from the same data. We find that these parameters have
significant effect on reconstruction quality, and conclude that
it is important to select the correct configuration parameters
for a target feature’s spatio-temporal properties. Specifically,
we see that smaller step sizes can improve the reconstruction
quality when the window size and the number of iterations
are small. This information can be used during reconstruction
when it is not feasible to collect sufficient data from the
sample, e.g. dose sensitive biological samples. We also see that
increasing the number of iterations can compensate the small
step sizes and improve the image quality when the window
size is medium to large. We observe that depending on the
properties of a feature (and its motion), a configuration with
less computational demand can produce better reconstruction
quality.

Our system enables configuration parameters to be adjusted
dynamically over the course of experiment, providing oppor-
tunities for balancing reconstruction quality and computational
costs to achieve better observations of phenomena. It can be
used for improving advanced experimentation techniques such
as autonomous experimental steering.
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