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ABSTRACT

X-ray computed tomography (XCT) is used regularly at synchrotron
light sources to study the internal morphology of materials at high
resolution. However, experimental constraints, such as radiation
sensitivity, can result in noisy or undersampled measurements. Fur-
ther, depending on the resolution, sample size and data acquisition
rates, the resulting noisy dataset can be terabyte-scale. Advanced it-
erative reconstruction techniques can produce high-quality images
from noisy measurements, but their computational requirements
have made their use exception rather than the rule. We propose
here a novel memory-centric approach that avoids redundant com-
putations at the expense of additional memory complexity. We
develop a system, MemXCT, that uses an optimized SpMV imple-
mentation with two-level pseudo-Hilbert ordering and multi-stage
input buffering. We evaluate MemXCT on various supercomputer
architectures incolving KNL and GPU. MemXCT can reconstruct
a large (11Kx11K) mouse brain tomogram in ~10 seconds using
4096 KNL nodes (256K cores), the largest iterative reconstruction
achieved in near-real time.

ACM Reference Format:

Mert Hidayetoglu!, Tekin Bicer?, Simon Garcia de Gonzalo!, Bin Ren®,
Doga Giirsoyz, Rajkumar Kettimuthu?, Ian T. Foster?, and Wen-mei W.
Hwu'. 2019. MemXCT: Memory-Centric X-ray CT Reconstruction with
Massive Parallelization . In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC °19), November 17-22, 2019,
Denver, CO, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3295500.3356220

1 INTRODUCTION

X-ray computed tomography (XCT) is a widely used nondestruc-
tive 3D imaging technique for observing and understanding the
internal morphology of samples and materials. Synchrotron light
sources, such as the Advanced Photon Source (APS), can provide
high-brilliance x-rays that enable tomographic imaging of centime-
ter sized samples at sub-micrometer (um) spatial resolution and
these experiments can generate few GBs up to TBs of data volumes
in short time with the typical pixelated detectors that can run at
16GiB/s [1]. However, the quality of data collected from CT experi-
ments depends heavily on factors such as radiation exposure time
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(dose) and target spatial resolution. Much effort has been devoted
to develop and implement advanced reconstruction algorithms to
improve image quality when collected data is noisy or imperfect
(e.g., due to limited dose.)

Modern x-ray reconstruction approaches involve either (i) direct
solvers based on analytical inversion or (ii) iterative solvers when
one can accurately model experimental conditions or constraint
the solution based on prior knowledge of the sample. Analytical
methods such as the filtered backprojection (FBP) algorithm are
computationally efficient, but reconstruction quality is often poor
when measurements are noisy or undersampled. Iterative methods,
on the other hand, can use advanced optimization and regulariza-
tion techniques to handle inherent noise in x-ray measurements [3-
9]. However, these methods are computationally more demanding
than the analytical methods, since forward and backprojection op-
erations require many (irregular) accesses and computation at each
iteration. Thus, efficient implementation and parallelization are
crucial for high-quality large-scale image reconstructions.

Most state-of-the-art reconstruction software and libraries can
perform parallel reconstruction to some extent. However, these
implementations mostly rely on data replication [10, 11] and/or
redundant computations [12, 13], each of which significantly limits
the runtime performance of the system due to repeated computation
of intermediate indices of ray tracing and irregular data accesses.

We propose here a novel memory-centric approach to avoid
redundant computation by removing on-the-fly operations at the
expense of greater memory complexity. Our system, MemXCT, uses
an optimized sparse matrix-vector multiplication (SpMV) imple-
mentation with multi-stage buffering and two-level pseudo-Hilbert
ordering to optimize data communication, partitioning, and accesses
at different analysis levels and on both measurement (sinogram)
and reconstructed (tomogram) data.

MemXCT memoizes on-the-fly operations and therefore requires
more memory than alternatives. However, its overall per-node
memory footprint decreases linearly with increasing computing
resources, promoting scalability with massive parallelization and
enabling iterative reconstruction of extremely large datasets with
efficient resource use. Further, MemXCT stores intermediate data
structures in compressed format to minimize memory footprint.

To illustrate the practical implications of MemXCT optimizations,
we show in Fig. 1 a 2D tomogram from a 3D mouse brain image with
total size 11 2931129311 293, obtained by reconstructing a sino-
gram with 4501x11 293 dimensions. This single-slice reconstruction
was generated with 30 conjugate gradient (CG) iterations in about
10 seconds on 4096 KNL nodes (256K cores) using MemXCT. This
high speed capability makes it feasible, for the first time, to apply
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Figure 1: Multiple zooms on a single 11293X11293 2D slice of a mouse brain image generated by reconstruction, with the
methods described here, from a single sinogram with size 4501x11 293. Data were collected by Dyer et al. [2] at the APS. Single-
slice reconstruction with 30 CG iterations on 4096 KNL nodes takes ~10 seconds. Memory footprint of the application is 10.2

TiB. The full mouse brain consists of 11293 slices.

advanced iterative reconstruction algorithms to extremely large CT
datasets. The multi-scale nature of the reconstruction is presented
by zooming progressively to the brain arteries, where great detail
can be seen. High reconstruction quality at such scales is important
as subsequent data analysis steps, such as segmentation of blood
vessels and myelinated axon tracts, are highly dependent on the
quality of the reconstruction.
The principal contributions of this paper are as follows:

e We propose a memory-centric approach that uses an ex-
tended SpMV to address race conditions due to scatter oper-
ations. Our implementation replaces scatter operations on
sinogram and tomogram domains with gather operations.

o We implement a two-level pseudo-Hilbert ordering to organize
communication and data access pattern, further improving
communication performance, utilization of different levels
of memory hierarchy, and cache utilization.

e We introduce a multi-stage input buffering. Domain partition-
ing improves process-level data communication and locality;
multi-stage buffering enables data reuse in first-level caches
and minimizes memory latency.

o We extensively evaluate MemXCT performance on both KNL
and GPU systems up to 4096 nodes, and show architecture-
specific considerations and optimizations.

2 BACKGROUND AND MOTIVATION

We first explain XCT experiments and their data acquisition process.
Then, we describe the steps involved in iterative image reconstruc-
tion. Finally, we explain computational bottlenecks in iterative
reconstruction approaches and introduce our solutions.

2.1 Data Acquisition and Measurement Process

In an XCT experiment, the sample is placed on a rotation stage
and illuminated by an x-ray source, while collecting 2D images
through a detector as the sample is being rotated: see Fig. 2. The
mathematical model of the measurement process is based on Beer’s
law [14] that describes interaction between X-rays and matter:

Ig(s) = In(s) exp [-pg(s)], where Iy(s) is the incident x-ray illumi-
nation on the sample and Iy(s) are the collected measurements at a
number of different 0 angles as a result of a tomographic scan.

In Fig. 2, a set of collected projections from a sample is shown
with pgi. Considering parallel beam geometry, the sinogram pg(s)
is a cross section of projections (shown in blue grid on py-) that
consists of Iy measurements from f. The goal of a tomographic
reconstruction algorithm is to recover 2D image slice (tomogram)
from its corresponding sinogram py(s).

2.2 Iterative Formulation

Tomographic reconstruction solves the problem

% = argmin ||y — Ax||* + R(x), 1)
xeC

where x is the reconstructed tomogram, A is the forward model,
y is the sinogram, R(x) is a regularizer functional, x is the search
variable, and C is a constraint on x.

Almost all iterative solvers based on gradient descent perform
three common steps in each iteration as depicted in Fig. 2. Specifi-
cally, for iteration i: first, the residual r; = y — Ax; is found through
forward projection; second, the gradient is found through backprojec-
tionas V|ly—Ax;||> = ATr;; and finally, the candidate solution is up-
dated in the negative-gradient direction as x;+1 = x;—aV||ly—Ax; 112,
where « is the step size. Iterative approaches can also involve addi-
tional updates due to regularizer R(x) and constraint C. However,
this paper focuses on the common computational costs involving
aforementioned steps.

2.3 Forward and Backprojection

Forward and backprojections are the two most computationally
demanding kernels in iterative tomographic reconstruction ap-
proaches. Many reconstruction libraries, e.g. Trace and TomoPy[10,
13], implement Siddon’s algorithm [15] to perform ray tracing on
tomogram domain so that the exact length and weight informa-
tion on each voxel can be computed for each intersecting x-ray.
For forward model, these information are used for computing the
residuals, whereas for backprojection they are used for gradient
and update operations. Since storing voxel indices and length in-
formation for all rays and voxels require significant memory, most
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Figure 2: Fig. (a) illustrates an experimental setup where a
target object is illumined with a synchrotron light source.
Photons are attenuated by different amounts according to
the object’s attenuation coefficient profile and the photons’
travel distance within the object. Fig. (b) presents how the
detector measurements are organized and stored as projec-
tions (from different angles). Once the experiment is com-
pleted, the sinograms are extracted from the projections,
and the images corresponding to the object are iteratively
reconstructed as shown in Fig. (c).

state-of-the-art approaches perform ray tracing computations on-
the-fly. For instance, a sinogram with 1501 x 2048 dimensions re-
quire 56GiB memory to store intermediate data structures. Listing 1
illustrates the high level implementation of iterative reconstruc-
tion and repetitive computations of indices and lengths arrays. We
term reconstruction algorithms that compute on-the-fly ray tracing
information as compute-centric XCT (CompXCT).

Listing 1: High Level Implementation of CompXCT

1 for(int i = @; i < num_iters; ++i){ //iterations

2 for(int j = 0; j < sinogram_rows; ++j){

3 float theta = rotations (j); //Corresponding 6 for row j

4 for(int k = 0; k < sinogram_cols; ++k){

5 int **indices = intersecting_voxels (j, k, theta, tomogram);
6 float **lengths = compute_lengths (j, k, theta, tomogram);
7 float m = sinogram[j, k]; //Measured data for simulated ray
8

float residual = forward_model (m, indices, lengths, tomogram);
9 // Apply inverse model and then update tomogram
10 backprojection (residual, indices, lengths, tomogram);
11 3}
12 3}
13 3}

2.4 Computational Bottlenecks and Overview
of Our Solution: MemXCT

Fig. 3 illustrates the techniques used for traditional CompXCT and
proposed MemXCT approaches in yellow boxes. The existing bot-
tlenecks and their influence are given next to the areas for potential
optimizations with different shades of black, in which darker shades
indicate higher contribution to performance bottleneck.
CompXCT eliminates the need for storing intermediate data
structures; however, since these data structures are recalculated for
each iteration, they introduce additional computational complexity
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Figure 3: Memory-centric and compute-centric approaches
for XCT and their areas for potential optimizations. Shades
of black color indicate higher contribution to performance
bottleneck.

to the execution. Further, on-the-fly calculation of indices limits
the optimizations for vectorization as repeated sorting and padding
operations nullify any performance benefit. As a remedy, MemXCT
embraces a memory-centric approach that memoizes ray-tracing
operations and performs efficient SpMV using compressed (vector-
izable) data structures on both sinogram and tomogram domains.
Further, the irregular data access patterns are normalized using
pseudo-Hilbert ordering and first level cache utilization are im-
proved using multi-stage buffering. These optimizations result in
high-performance computations and converts performance bottle-
necks from computation to memory.

The parallelization of CompXCT approaches is typically based
on x-rays, where each measured ray can independently be projected
on tomogram domain. This type of parallelization performs well for
forward projection kernel (residual computation) since the main
operation is reading the intersected voxel values from tomogram
domain, i.e. rays perform gather operations during forward projec-
tion. However, subsequent backprojection and update steps require
synchronization among parallelized rays since there can be many
updates from different rays on the same voxel, i.e. rays perform
scatter operations during backprojection and updates. Recent work
deals with race conditions by either applying atomic operations [16]
or duplicating the pixel domain across threads/processes and then
performing a reduction [10, 11]. Unfortunately, the performance
of atomic operations hinges on hardware implementations, which
differ substantially across architectures [17], and typically results
in significant performance degradation on massively parallel ar-
chitectures. Domain duplication is also impractical for GPU-like
architectures, since each parallel unit requires a replica of the do-
main and the total memory footprint almost always exceed avail-
able resources. Further, distributed memory parallelization using
duplication can result in redundant communication cost [10].

In contrast, MemXCT partitions both sinogram and tomogram
domains among parallel units and transforms scatter operations to
gathers. Note that this transformation can result in irregular data
accesses on both domains, however our pseudo-Hilbert index order-
ing coupled with multilevel buffering amortize performance penalty
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due to irregular data accesses. MemXCT also exploits Hilbert order-
ing (hence named two-level pseudo-Hilbert ordering) for process-
level domain partitioning, which results in efficient communication
and better connectivity between processes [18, 19]. We describe
these optimization in detail in the following section.

3 MemXCT OPTIMIZATIONS

In this section, we provide detailed information about MemXCT.
First, we explain the baseline implementation of MemXCT, in which
we focus on explicit SpMV operations. Then, we present our sys-
tem optimizations that use two-level pseudo-Hilbert ordering and
multi-stage input buffer. We also explain our distributed memory
parallelization considerations with MPL

3.1 Baseline Implementation

MemXCT performs forward and backprojection operations as ex-
plicit SpMV operations to remove redundant and inefficient com-
putations. Listing 2 shows the baseline Compressed Sparse Row
(CSR) SpMV kernel used for both forward and back projection. In
forward projection, x and y correspond to tomogram and sinogram
data, respectively, and vice-versa in backprojection. In either case,
ind and val data correspond to precomputed pixel-ray intersection
indices and lengths that are reused to avoid redundant computation.

Listing 2: Baseline MemXCT Kernel

#pragma omp parallel for schedule(dynamic,partsize)
for(int i = @; i < numrow; ++i){
float acc = 0;
//vectorize
for(int j = displ[il; j < displ[i+11; ++j)
acc += x[ind[jllxvallj]
y[il = acc;

}

[ R N

3.1.1  Regularand Irregular Accesses. Each fused multiply-add (FMA)
operation in Listing 2 performs three important memory accesses:
ind and val are regular, and x is irregular. The regular accesses
are sequential and hence exhibit low memory latency. The irreg-
ular accesses to x exhibit long latency due to high L2 miss rates.
MemXCT addresses this problem by improving cache reuse through
novel data layout techniques that increase locality, as illustrated in
Section 3.2.

3.1.2  Row Partitioning & Parallelization. Listing 2 involves gather
operations only and hence is suitable for massive parallelization.
MemXCT parallelizes the outer loop among row partitions. On KNL,
partitions are distributed across dynamically scheduled OpenMP
threads. On GPU, each partition corresponds to a CUDA thread
block. Each OpenMP thread processes many row partitions, whereas
each CUDA thread processes a single row in a partition.

3.1.3  Vectorization on KNL. MemXCT enables efficient instruction-
level parallelization through vectorization of the inner loop in List-
ing 2. Each KNL vector-processing unit (VPU) can load multiple
regular and irregular data, and multiply them in one step with an
AVX-512 instruction. Then, they perform parallel reductions on par-
tial data, and add results to the accumulator. We provide necessary
data alignments for efficient vectorization.
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Figure 4: Two-level pseudo-Hilbert ordering and domain de-
composition: (a) the first level, and then the lower level on
(b) process and (c) thread levels.

3.1.4  Coalesced Memory Access on GPU. Our GPU implementation
modifies Listing 2 to use the ELL (column-major) storage format
instead of CSR. Transposed ELL data structures provide coalesced
memory access through consecutive threads accessing consecu-
tive memory locations. We minimize redundant computations and
memory accesses due to ELL format by performing zero padding
on thread-block (i.e., partition) level, rather than on matrix level.

3.2 Two-Level Pseudo-Hilbert Ordering

MemXCT implements a two-level pseudo-Hilbert ordering on both
tomogram and sinogram data of arbitrary size. Fig. 4 shows an
example for a 13X11 domain. First, the domain is tiled with a min-
imum number of equi-sized square tiles with dimension a power
of two. In the figure, tile size is 4x4 and 12 tiles are used to cover
the 13x11 domain. These tiles are indexed with a Hilbert ordering
for rectangular domains [20], as shown in Fig. 4(a). A second-level
Hilbert ordering is then applied to the data within each tile. Neces-
sary rotations are performed to provide data connectivity among
tiles, so as to achieve both data locality and connectivity for do-
main decomposition at the process and thread levels, as discussed
next. The process-level domain decomposition is essential for MPI
parallelization, as discussed in Section 3.4.

3.2.1 Irregular Data Access Patterns. As shown in Fig. 5, the pro-
cessing of a single sinogram or tomogram results in a linear or
a sinusoidal memory access footprint, respectively. In this exam-
ple, they perform 25 and 30 accesses on respective domains. With
row-major (naive) ordering of 2D data and 64 B cache line, each
row in Fig. 5 would correspond to a single cache line. In this case,
both tomogram and sinogram data would have 16 cache misses,
yielding miss rates of 64% and 53%, respectively. Row-major (or
column-major) ordering of 2D domains is very inefficient for XCT
because of its poor cache locality. That is, a single cache line does
not provide enough data reuse except on a few instances.

3.2.2 Cache Locality. In Fig. 5, Hilbert ordering maps each cache
line to a 4x4 block in a 2D domain, increasing cache data reuse.
As a result, cache misses are reduced to six and seven, yielding
rates of 24% and 23% for forward and back projection, respectively.
Hilbert ordering is portable to different cache-line sizes thanks to
its recursive nature. The cache locality provided by Hilbert ordering
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eliminates the memory latency bound of MemXCT to a great extent,
as results show in Section 4.2.2.

3.2.3  Partition Locality. Hilbert ordering not only provides cache
locality but also partition locality. That is, the outer loop of SpMV in
Listing 2 is partitioned with respect to the index of y, as described in
Section 3.1.2. In MemXCT, each partition remains connected at both
the process and thread levels, thanks to the connectivity provided by
two-level pseudo Hilbert ordering. In contrast, a Morton ordering
would yield disconnected partitions, since it does not guarantee
adjacent memory locations to have adjacent locations in the 2D
domain. Partition locality is essential for our further optimizations.

3.3 Multi-Stage Input Buffering

MemXCT implements a multi-stage buffering mechanism for: (1)
further reducing L2 cache miss rates of irregular data by explicit
staging of corresponding accesses on an L1 buffer, and (2) reducing
memory bandwidth consumed for index data by using two-byte
addressing. Listing 3 shows SpMV kernel with input buffering,
where stagedispl and stagenz arrays correspond to starting points
of (multi-stage) buffers and number of (nonzero) elements in buffers,
respectively.

Listing 3: Optimized MemXCT Kernel

1 #pragma omp parallel for schedule(dynamic)
2 for(int part = 0; part < numparts; ++part){
3 float output[partsize] = {03};

4 float input[buffsizel];

5 for(int stage=partdispl[part];stage<partdispl[part+1];++stage){
6 int start = stagedispl[stagel;

7 //vectorize

8 for(int i = @; i < stagenz[stagel; ++i)
9 input[i] = x[map[start+il];

10 for(int j = 0; j < partsize; ++j){

11 int start = stagexpartsize;

12 //vectorize

13 for(int i = displlstart+j]; i < displ[start+j+1]; ++i)
14 output[j]l += input[ind[ill*vallil;
15 3}

16

17 int start = partxpartsize;

18 //vectorize

19 for(int i = @; i < partsize; ++i)

20 if(start+i < numrows)

21 y[start+i] += output[il;

3.3.1 Data Reuse from Input Buffer. Fig. 6(a) shows memory ac-
cess footprints for processing a 64x64 tomogram and sinogram
partition in a 256X256 tomogram and sinogram domain, respec-
tively. The tomogram partition reads from the sinogram domain
and the sinogram partition from the tomogram domain. Data access
footprints are shown in tomogram and sinogram domains. Darker
shades represents higher data reuse. For processing each partition,
MemXCT explicitly moves required data from memory to an L1
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buffer through map at line 9 of Listing 3. Then it reuses buffered
data for irregular accesses and hence performs less memory access.

3.3.2  Multi-Staging. In a single-stage (naive) buffering, the re-
quired buffer size grows with the problem geometry. If the buffer
is too large, it cancels the buffering benefit since it leaks into L2
or even memory [21]. As a remedy, MemXCT implements a multi-
stage buffering strategy with a constant buffer size. In this case,
irregular data is accessed through multiple buffer stagings. Stages
are determined with respect to Hilbert ordering, ensuring data lo-
cality. As an example, Fig. 6(b) shows mapping of buffer stages
on 2D tomogram and sinogram domains. With a buffer size of 32
KB, MemXCT performs irregular accesses through four and three
stages for projection and backprojection, respectively. On KNLs,
buffer size should be smaller than 32 KB L1 cache to avoid L2 leak.
On GPUs, the buffer is allocated through CUDA shared memory,
guaranteeing reuse from L1 cache.

3.3.3 Staging Overhead. Input buffering involves a staging over-
head. On KNL, an OpenMP thread stays idle while waiting staging
to be completed. Similarly on GPU, CUDA threads across warps
stall for synchronization before and after each staging. Input buffer-
ing also consumes some additional memory bandwidth for reading
map data. The next two subsections describe two techniques for
hiding buffering overhead and also to save some bandwidth.

3.3.4 Overlapping Staging and FMAs. MemXCT multi-stage buffer-
ing lends itself well to be used by the underlined hardware to hide
staging overhead. On KNL, this is done through SMT (simultane-
ous multithreading): when there are multiple threads running on a
single core, the hardware scheduler finds overlapping opportuni-
ties across buffer stagings and FMAs among threads. As a result,
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MemXCT enables effective SMT utilization. Similarly, GPU hard-
ware also takes advantage of overlapping through block scheduling
on SMs (streaming multiprocessors).

3.3.5 Saving Memory Bandwidth. Hilbert ordering and input buffer-
ing eliminate most of the memory latency due to irregular data ac-
cesses, and therefore MemXCT is bounded by memory-bandwidth
consumed by regular data. To alleviate this bottleneck, we use 16-bit
addressing to access input buffer (see ind at line 14 on Listing 3),
rather than 32-bit addressing (as in ind at line 6 on Listing 2). 16-
bit addressing can address buffer sizes up to 256 KB. This saves
25% of total bandwidth consumption of regular data, and provides
additional speedup (see Section 4.2.3 for results.)

3.4 MPI Parallelization

Traditionally, one domain (either tomogram or sinogram) is parti-
tioned while the other is duplicated across all processes. MemXCT
partitions both tomogram and sinogram domains by distributing
tiles evenly across MPI processes, as seen in Fig 4(b). Each process is
responsible for a single tomogram subdomain and a single sinogram
subdomain. Each subdomain consists of a single or several tiles, e.g.,
subdomain 0 consists of tiles 0-2. While processes are not perfectly
load balanced, it can be improved by finer tile granularity at the
cost of more preprocessing.

3.4.1 Sparse Communications. MemXCT communicates only nec-
essary data through MPI_Alltoallv. To explain, Fig. 7(b) shows
communication footprint of two 256x256 tomogram subdomains
shown in Fig. 7(a). For example, tomogram subdomain 7 interacts
only with sinogram subdomains 1, 2, 8-11, 13, and 14. Fig. 7(c)
shows the corresponding communication matrix, where each entry
represents communication between two processes. Communica-
tion size between each pair depends on the interaction footprint,
e.g., process 7 sends more data to process 1 than 14, as seen in
Fig. 7(d). Partition locality provided by two-level pseudo-Hilbert
ordering (described in Section 3.2) minimizes the footprint, and
hence increase data reuse and reduce communications.

3.4.2 Overlapped Interactions. MemXCT communicates sinogram
data rather than tomogram data because: (1) sinogram data is
smaller in many applications, and (2) it yields more data reuse
as compared to tomogram data. In forward projection, tomogram
subdomains send partial sinogram data to corresponding sinogram
subdomains where overlapped data is reduced, e.g., process 8, 9, and
11 reduces partial sinogram data received from process 7 and 10. In
backprojection, processes duplicates overlapped sinogram data and
send them to interacted processes which perform backprojections
on their respective tomogram subdomains. The communication
matrix for backprojection is the transpose of the one in Fig. 7(c).
The total amount of communications and load balancing for all
processes is shown in Fig. 7(e).

3.4.3 Parallelization Overhead. MemXCT parallelization of for-
ward projection mathematically corresponds to a factorization of
the projection matrix as A = RCAp. As a result, forward projec-
tion can be modeled as three fundamental steps: Ap, C, and R
which correspond to partial forward projection, communication,
and reduction operations. Backprojection can also be seen as simply
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AT = AIT,CTRT. The multiplication costs of A, and original A are

the same because they involve the same number of O(MN?) nonze-
roes. Thus, communication C and reduction R can be seen as the
MemXCT parallelization overhead. Both C and R have O(MN VP)
nonzeroes, where P is the number of processes. It is because when
P quadruples, total communication footprint on sinogram domain
doubles. For communications, there is an extra O(VP) term comes
due to the handshake overhead between processes. On the other
hand, compute-centric approach involves race conditions and hence
it duplicates the tomogram domain across all processes [10]. In that
case, duplicated domains has to be reduced through MPI_Allreduce
at the end of each backprojection, yielding O(N? log P) paralleliza-
tion overhead. Resulting computational complexities are shown in

Table 1.
Table 1: Computational Complexities

‘ Sequential ‘ Trace ‘ MemXCT
Memory | MN + N2 | MN/P + N? | MN?/P + MN/VP
Comput. MN? MN?%/P | MN%/P+ MN/\P
Comm. N/A N2 log P MN/\/? +P

M: # of projections, N: # of channels P: # of processes

3.5 Other Details

MemXCT requires an extra preprocessing step for avoiding re-
dundant and inefficient computations as opposed to a compute-
centric approach. The preprocessing involve: (1) Hilbert ordering
and domain decomposition, (2) ray tracing for constructing forward
projection matrix, (3) sparse transposition for constructing backpro-
jection matrix, and (4) row partitioning and building corresponding
buffer data structures. Preprocessing is MPI+OpenMP parallel and
is performed on CPU.

3.5.1 Preserving Data Locality. MemXCT preserves data locality
through all matrix manipulations, which is essential for our per-
formance optimizations. For example, constructing backprojection
matrix requires a sparse matrix transposition of the forward projec-
tion matrix. MemXCT performs this through a scan-based matrix
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transposition [22] which preserves data ordering, rather than an
atomic-based transposition which randomizes data ordering.

3.5.2 lIterative Solution. There is a plethora of solution schemes for
iterative XCT. To mention a few, recent work implements SIRT [10],
SGD [16], and ICD [23] iterations. Any of them can be implemented
for our proposed memory-centric approach in a plug-and-play man-
ner with minor modifications. Nevertheless, MemXCT implements
CG iterations [24], which has a faster convergence rate than any of
them (at a higher per-iteration cost). It is simply because: (1) a full
gradient is found rather than a partial gradient, (2) optimal step size
is found analytically via an additional forward projection, and (3)
visiting redundant directions is prevented via three-term recursion.
We use a heuristic early termination of iterations to prevent over-
fitting, which is practically considered as a regularization method.
Convergence results are shown in Section 4.1.2.

4 NUMERICAL RESULTS

All experiments in this paper are performed on ALCF Theta [25],
NCSA Blue Waters [26], ALCF Cooley [27], an IBM Minsky node
[28], and an Nvidia DGX-1 node [29]. Table 2 characterizes these
machines. Mem. B/W is theoretical on-chip memory bandwidth;
we assume that ECC (error correcting code) degrades theoretical
bandwidth of K20X and K80 by 15% [30]. Link describes interface
between host and device.

Table 2: Key Features of Machines Used for Experiments
Machine ‘ Nodes  Accel. ‘ On-Chip Mem. Mem. B/'W ‘ Mem. Link

Theta 4392 KNL 16 GB MCDRAM 400 GB/s 192GB 90 GB/s
Blue W. 4228 K20X 6 GB DDR5 121.5GB/s | 32GB PCle
Cooley 126 2xK80 12 GB DDR5 204 GB/s 384 GB PCle
Minsky 1 4xP100 16 GB HBM2 720 GB/s 128 GB NVLink
DGX-1 1 8xV100 16 GB HBM2 900 GB/s 512GB NVLink

We used six datasets, as shown in Table 3, in order to evalu-
ate application performance. The first four are artificially created
for performance evaluation and the latter two are from real syn-
chrotron experiments at APS. Measurement sinograms are given
for a single slice. The artificial datasets follow parallel raster scan
geometry just as the real datasets. The irregular and regular data
footprints, defined in Section 3.1.1, are given for all datasets in
Table 3. The first/second entry for memory footprints are accessed
in forward/backprojection, respectively. RDS1 involves a shale sam-
ple [31] and RDS2 involves a brain sample. RDS1 is available open
source [32], and RDS2 is proprietary.

4.1 Evaluating Overall Performance

4.1.1  Comparison with Compute-Centric Approach. We compare
our memory-centric MemXCT with compute-centric Trace [10], an
open-source high-performance implementation that employs SIRT
iterations. To enable a one-to-one comparison, we implement SIRT,
and run 45 iterations with both codes on a single KNL for the ADS2
and RDS1 datasets (see Table 3). Table 4 reports solution times and
corresponding speedups. In the best case, where MemXCT memory
footprint fits within MCDRAM, it performs each iteration 49.2X
faster than Trace. In the worst case, where MemXCT is bounded by
slow DRAM bandwidth due to its large memory footprint, it still
performs each iteration 6.86x faster. Trace memory footprint fits
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within MCDRAM in both cases, but it has to perform redundant
and inefficient computation.

Table 3: Dataset Details and Memory Footprints

Sinogram Irregular Regular
Name (MXN) Sample Data Data
ADS1 360X256 Artificial 256/360 KB 215/215 MB
ADS2 750%512 Artificial 1.0/1.5 MB 1.8/1.8 GB
ADS3 | 1500x1024 Artificial 4.0/6.0 MB 14/14 GB
ADS4 | 2400%x2048 Artificial 16/19 MB 90/90 GB
RDS1 | 1501x2048 Shale Rock 16/12 MB 56/56 GB
RDS2 | 4501x11283 Mouse Brain 500/198 MB  5.1/5.1 TB

Table 4: Comparison with Compute-Centric Approach

Preproc. | Reconst. Per-Iter. Speedup
3 Trace N/A 26.05 s 579 ms 1x
2 MemXCT | 4.00s 053s  118ms  49.2X
3 Trace N/A 4253 s 9.45s 1x
2 MemXCT 146.3 s 62.00 s 1.37 s 6.86X

Table 4 reports preprocessing overhead of MemXCT. Although
the preprocessing step appears to be a significant fraction of overall
time, when it comes to many-slice reconstruction, the preprocessing
cost is paid only once for the first slice. It is then reused for all the
remaining slices, as shown in Table 5.

4.1.2  lIterative Convergence. MemXCT uses CG for iterative solu-
tions, as discussed in Section 3.5.2, as opposed to SIRT used by
Trace. Fig. 8(a) presents convergence properties by comparing L-
curves of CG and SIRT up to 500 iterations: horizontal and vertical
axes represents residual and reconstruction norms, respectively
(see Section 2.2 for iterative formulation). As L-curve suggests, CG
solution experiences overfitting soon after 30 iterations where the
image does not further improve, but instead starts to be polluted by
noise. Therefore we terminate CG solution after 30 iterations. On
the other hand, SIRT does not converge even with 500 iterations.
Fig. 8(b) shows a single-slice reconstruction from RDS1, and (c) and
(d) compare image details after 30 CG iterations with MemXCT and
45 SIRT iterations with Trace, respectively.

4.1.3 Machine-Specific Considerations. We reconstruct RDS1 on
small number of Theta, Cooley, and Blue Waters nodes. Machines
were described briefly earlier. Unfortunately, reconstruction does
not fit within DGX-1 or on less than eight nodes of Cooley or 32
nodes of Blue Waters, due to limited memory of their respective
GPUs and the large memory complexity of MemXCT. Nevertheless,
reconstruction fits well into a single Theta node thanks to its large
DRAM capacity.

Table 5: Reconstruction on Various Nodes-Machines

Nodes-Machine ‘Preproc. Speed. ‘ Recon. Speed. All Slices

1-Theta (1 KNL) 139 s 1x 63.3s 1X 1.44 d*
8-Theta (s KNL) 16.5s 8.42% 3.33s 19.0% 1.89h
8-Cooley (16 Ks0) 25.5s 5.45%X 2.89s 21.9%x 1.64h
32-Blue W. (32 K20X) 14.6 s 9.52X% 1.82s 34.8% 62.1 m
32-Theta (32 KNL) 454 s 30.6X 137 s 46.2X 46.8 m
32—Cooley (64 K80) 6.31s 22.0X 1.22 s 51.9% 41.6 m

* Calculated based on single-slice execution time.
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Figure 8: For RDS1: (a) L-curves for CG and SIRT iterations. (b) Single-slice reconstruction with (c) CG and (d) SIRT iterations.

Table 5 reports RDS1 preprocessing and reconstruction times on
various numbers of nodes-machines. Results show that 32 nodes
of all machines enjoy comparable time to solution: reconstruction
of all slices reduces from 1.44 days down to about or less than an
hour. Preprocessing time also scales well and, in fact, it is insignif-
icant compared to reconstruction time of all slices. Table 5 also
shows the super-linear speedup property of MemXCT on KNLs:
8-Theta is 19X faster than 1-Theta. This is a result of shrinking per-
node memory footprint and extra memory bandwidth gain when
it fits within 16 GB MCDRAM capacity. The super-linear speedup
also demonstrates effective domain decomposition and reduced
communications described in Section 3.

4.2 Performance Optimizations

This subsection presents single-device performance gains due to
the optimizations described in Section 3. Fig. 9 shows forward and
backprojection performance metrics for ADS1 through ADS4 on
KNL and GPU. ADS3 and ADS4 are too large to fit in a single GPU
(see Table 3). Hilbert ordering and input buffering are applied to the
baseline in order because the first optimization enables the second.
Since performance is dependent on both dataset and device, we
tune all results (including the baseline) independently for maximum
GFLOPS as described in Section 4.2.4.

Since there are two FLOPs per non-zero element in the projection
matrix (one multiplication and one addition per FMA), GFLOPS
metric is calculated as 2Ny, /t, where t is the time measured for a
single forward/backprojection. Similarly, average memory band-
width utilization is calculated for regular data only as Ny, X Breg /t,
where Breg is regular data (in bytes) read from memory per FMA,
respectively. L2 miss rates are measured by Intel VTune profiler.
The performance metrics are aggregated over many iterations.

MemXCT (30 CG lter.): 63.3 seconds

M. Hidayetoglu et al.

Trace (45 SIRT Iter.): 425 seconds
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The reason for this behaviour is that the baseline is bounded by
memory latency rather that memory bandwidth, due to the high
L2 miss rates of irregular access. As a result, larger datasets suffer
more performance degradation due to their higher L2 miss rates, as
seen in Fig. 9(b). In contrast, GPU performance improves slightly
with larger datasets, as more parallelism hides the latency.

4.2.2  Pseudo-Hilbert Ordering provides data locality and reduces
the L2 miss rates for all datasets as seen in Fig. 9(b). ADS1 does
not benefit from Hilbert ordering as much as other datasets due

Figure 9: KNL performance: (a) GFLOPS, (b) L2 miss rate,
and (¢) memory bandwidth utilization. GPU GFLOPS perfor-
mance: (d) K80, (e) P100, and (f) V100.

to its small size. Nevertheless, as opposed to the baseline, the per-
formance of Hilbert ordering is bounded by memory bandwidth
consumed by regular data rather than memory latency. On KNL,
regular data smaller than 16 GBs (ADS1 and ADS2) fits completely
into MCDRAM and performs better whereas large regular data
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(ADS3 and ADS4) does not and is bounded by low DRAM mem-
ory bandwidth. On GPUs, the improvement is less noticeable with
larger L2 cache because irregular data is better cached. As a result,
pseudo-Hilbert ordering speeds up K80, P100, and V100 baselines
about 1.93x%, 1.39%, and 1.03X, respectively.

This analysis shows that ADS1 and ADS2 use at least 78% and
74% of the theoretical MCDRAM bandwidth, respectively. The ADS3
regular data (28 GB) is larger than MCDRAM (16 GB) where it is
cached partially. We cannot say the same for ADS4 because it has
too large regular data to be significantly cached at MCRAM. As
a result, we deduce that ADS4 uses at least 73% of the theoretical
DRAM bandwidth. These utilizations agree well with STREAM
benchmarks in previous work [33]. Similarly, K80, P100 and V100
use 78%, 69%, and 92% of their theoretical HBM bandwidths, respec-
tively. These numbers agree well with benchmark measurements
in previous work [34].

4.2.3 Multi-Stage Buffering as we described in Section 3.3, comes
with an staging overhead. On KNL, the gain amortizes the overhead
when dataset is large, as seen in ADS2 and up. ADSI1 is not large
enough to show any further performance improvement with input
buffering. The bandwidth utilization for input buffering in Fig. 9(c)
and Fig. 9(d)—(f) is adjusted with respect to additional memory-to-
buffer mappings as well as reduced bytes for buffer-address indices.

It is worth to comment that reduced L2 miss rate saves signifi-
cant memory bandwidth on K80 since its utilization due to regular
data increases to at least 67% of theoretical peak as seen in Fig. 9(d).
The respective utilizations on P100 and V100 drop slightly, if not
remain the same, because their L2 miss rates are already low and
bandwidth utilizations are already high thanks to Hilbert ordering
and their large L2 capacity. As a result, we can deduce that GFLOPS
improvements on P100 and V100 are solely provided by the band-
width saving due to reduced number of bytes needed for addressing
shared-memory.

4.2.4  Tuning the baseline and Hilbert ordering are relatively sim-
ple on both KNL and GPU architectures. We perform an exhaustive
search and find out that blocks size of 128 scheduled dynamically
among 128 threads (2 SMT/core) provides good single KNL perfor-
mance for ADS1 through ADS4. Similarly, block size of 32 or 64
provides good single GPU performance.

For input buffering optimization, parameters should be re-tuned
along with buffer size for effective SMT utilization on KNL. Fig. 10(a)-
(c) shows GFLOPS heat maps for ADS2 with various block and buffer
sizes, and different numbers of SMT/core. Results show that input
buffering can use more SMTs per core because it finds opportunity
to overlap buffer stagings and accesses among SMTs. The follow-
ing factors need to be considered when using SMTs in this way:
A larger block size increases the per-block memory footprint and
thus data reuse from the buffer, but also increases the number of
buffer stagings per block, which comes with an overhead. In that
case, it is better to increase buffer size for limiting the number of
stagings. However, too few stagings decreases the opportunity to
overlap buffer stagings and accesses among SMTs. Also, too large a
buffer size can result in leaks to L2.

On KNL, peak GFLOPS performance for ADS1 and ADS?2 is
achieved with 4 SMT/core and buffer size of 8 KB. Tuning for ADS3
and ADS4 is cumbersome since they are severely limited by DRAM
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bandwidth and SMT effect is not that apparent. Therefore we use
2 SMT/core, and buffer size of 16 KB for them. Block size of 128
provides good performance for all datasets.

On GPUs block size of 512 or 1024 and buffer size of 48 KB or
96 KB provides good single-GPU performance for all GPUs. It is
worth to note that addressable shared-memory size is limited to 48
KB on P100 and K80 and therefore tuning space is half the size. We
follow a similar tuning strategy for GPUs as explained for KNL, as
seen in Fig. 10(d).

4.2.5 Comparison with Existing Libraries. We compare MemXCT
forward/backprojection kernel performance with SpMV functions
of existing libraries. We use Intel MKL library on KNL, and Nvidia
cuSPARSE library on GPU. Table 6 reports speedups of our MemXCT
baseline implementation and optimizations compared to CSR (on
KNL) and column-major ELL (on GPU) SpMV of respective libraries.
Evidently, MemXCT baseline implementation is faster than the ex-
isting libraries, with the exception for K80. This is due to K80 small
L2 cache compared to P100 and V100 GPUs. On P100 and V100,
our baseline is 1.39% and 1.79x faster since cuSPARSE pads CSR
matrix with —1 [35] which requires extra branches whereas we pad
with 0 and perform redundant multiplication with 0 to avoid thread
divergence on GPUs. Also, cuSPARSE pads CSR on a matrix level
whereas we pad on a thread-block (partition) level, which saves
some of the redundant operations. As a result, we outperform exist-
ing libraries thanks to our application-specific SpMV optimizations.
Nevertheless, both MKL and cuSPARSE are optimized for general
SpMV whereas our kernels are optimized for XCT application.

Table 6: Comparison with MKL and cuSPARSE for ADS2

| KNL K80 P100 V100

MKL/cuSPARSE | 1x 1X 1X 1x
MemXCT Baseline | 1.42x 0.52X 1.39x 1.79x
Pseudo-Hilbert Ordering | 4.99x 1.13Xx 1.93x 1.84X
Multi-Stage Buffering | 6.55X 1.56X 223X 2.11X
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Figure 11: Weak scaling: (a) ADS3/Theta, (b) ADS2/Blue Waters. Strong scaling: (c) RDS2/Theta, (d) ADS3/Blue Waters.

4.3 Scalability

For presenting scaling of MemXCT on a large number of nodes, we
perform weak and strong scaling experiments on Theta and Blue
Waters. For each experiment, we perform a full solution with 30 CG
iterations, and report total reconstruction times as well as Ap, C,
and R kernel times as they are defined in Section 3.4. Kernel times
involve both forward and backprojection. In order to accurately
measure each individual kernel, we placed the necessary artificial
barriers, though they slightly increase total execution time. Among
the kernels, C involves inter-node communication therefore we
include its host-device communication times. For demonstrating
scaling, O(VP) and O(1/P) curves are included in Fig. 11 as well as
the sinogram data dimensions.

4.3.1 Weak Scaling. Each weak scaling experiment is performed by
starting from the reconstruction of a root dataset, and then doubling
the number of channels and projections in a sinogram on each step.
As computational cost increases eight times per step, the number of
nodes is increased eight times accordingly. Fig. 11(a)—(b) show weak
scaling of root datasets ADS3 and ADS2 on Theta and Blue Waters,
respectively. Both experiments exhibits good weak scaling except
communication operations C because of its O(VP) complexity, as
explained in Table 1. On Blue Waters, weak scaling is bounded by
communication on 512 nodes and up; on Theta, communication is
not the bounding component, but rather A,. The difference is due
to architectural differences across machines.

4.3.2  Strong Scaling. For strong scaling, we reconstruct RDS2
(brain) and RDS1 (shale) samples on Theta and Blue Waters re-
spectively. We increase numbers of nodes and the dataset sizes
are fixed. The minimum number of nodes needed for RDS2 and
RDS1 to fit well within their respective systems is 128 and 32 nodes
respectively. Reconstructions are scaled up to 4096 nodes of each
system. Fig. 11(c)-(d) show strong scaling results. Theta exhibits
good scaling up to 2048 nodes where as Blue Waters scales up to
128 nodes. The main reason (apart from the difference in network
bandwidth and topology) is that the RDS2 solution is ~91X more
costly than the RDS1, and therefore the former scales better than

the latter. Also, Ay kernel exhibits super-linear speedup, demon-
strating efficient domain partitioning and high-bandwidth memory
utilization, as discussed in Section 4.1.3. RDS2 reconstruction re-
sults are in Fig. 1. In contrast, Ap performance saturates on 1024
nodes of Blue Waters (and up) since smaller per-node computation
penalizes GPU performance.

Table 7: Comparison of Theta and Blue Waters
\ RDS1 RDS2 12 000x8192
BW | 805 ms (128 K20X) 74 s (4096 K20X) 24.4 s (4096 K20X)
Theta | 474 ms (128KNL) 10 s (2048 KNL)  3.25 s (4096 KNL)

4.3.3 Comparison of Theta and Blue Waters Systems. For cross-
comparing Theta and Blue Waters systems, we pick the fastest
reconstructions of both RDS datasets and their corresponding week
scaling versions when ran on 4096 nodes. Results are shown in
Table 7. RDS1 (shale) sample reconstruction runs fastest on 128
nodes on both Theta and Blue Waters. In this case, Theta is about
1.7x faster than Blue Waters. RDS2 (brain) sample reconstruction
runs fastest on 2048 nodes of Theta and requires at least 4096 nodes
to fits well into Blue Waters. In this case, Theta is 7.4X faster than
Blue Waters. Lastly, Theta is about 7.5X faster on reconstructing
the 12 000x8192 dataset.

5 RELATED WORK AND DISCUSSION

Iterative reconstruction algorithms provide superior image quality
considering analytical approaches, however their usage has so far
been limited with their computational demands [36-38].

The multicore parallelization of iterative reconstruction algo-
rithms has long been studied [39-42]. However, most prior ap-
proaches provide limited scalability and only consider optimiza-
tions in the object domain. Further, they suffer from redundant
computations when dealing with large datasets.

With the emergence of high-throughput many-core architectures
and state-of-the-art reconstruction algorithms, the applicability of
iterative techniques has become more feasible [12, 23, 43, 44]. Es-
pecially in medical imaging, iterative reconstruction approaches
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have been extensively used to provide high-quality 3D reconstruc-
tions [45-47] in order to limit patient radiation exposure [3, 48].
Most of these approaches rely on GPUs to meet computational
requirements of these algorithms [49-51]. Although GPUs can pro-
vide sufficient computational throughput, their limited memory can
accommodate only small- to medium-scale datasets. For large-scale
dataset host-device communication is known to be dominating
overhead in GPUs [52]. Further, most of these approaches rely on
on-the-fly computation of ray tracing, i.e. CompCXT type of data
access pattern, which shows suboptimal performance compared to
MemCXT.

Li et al. developed cuMBIR [16], a framework for model-based
iterative reconstruction on GPUs. They implement two solvers
ICD and SGD, and propose several optimizations including unified
thread mapping. Their method is also based on on-the-fly compu-
tation of A matrix, and performs redundant computations. Further,
their solution focuses on small to medium scale datasets that can fit
into single node GPUs. In comparison, MemCXT is optimized for
very large tomographic datasets that require not only single node
performance but also efficient large-scale execution.

Wang et al. [43] use KNL many-core capabilities to reconstruct
10242 tomograms (or 10243 3D volumes). They introduce the non-
uniform parallel super-voxel to exploit sinusoidal bands in sino-
grams and optimize data access patterns. Our approach shares
similarities with their work, but we consider parallelization and
performance optimizations in both the tomogram and sinogram
domains. Moreover, we further improve data access patterns and
communication using two-level pseudo Hilbert ordering and multi-
stage input buffering on both domains. Our evaluation also extends
to extremely large objects (112932 rather than 1024%), showing the
usability of our approach for very large datasets.

First space-filling curve example was presented by Peano in
1890 [53]. Later, space-filling curves have been successfully ap-
plied to improve performance of many applications [54-60]. In
[61], Mellor-Crummey et al. showed that data and computation
reordering based on space-filling curves can improve the perfor-
mance of irregular applications significantly. Moon et al. analyzed
clustering properties of Hilbert space-filling curve [62] on different
query shapes [63]. Reissmann et al. showed the effects of Hilbert
and Morton curves[64] on energy and locality [60]. In our work,
we applied two-level pseudo Hilbert ordering to optimize the per-
formance of tomographic reconstruction data access patterns and
inter-process communication.

6 CONCLUSION

We have described a memory-centric approach to XCT reconstruc-
tion. Our implementation, MemXCT, performs projection and back-
projection operations as explicit SpMVs with no on-the-fly (re-
dundant) computations or race conditions; these features allow it
to achieve up to 50X speedup over a high-performance compute-
centric approach. Although MemXCT has high memory complexity,
its per-node memory footprint decreases linearly with increasing
number of compute resources, which favors large-scale resources.
For solving the performance bottlenecks in traditional iterative
reconstruction approaches, we propose and implement two-level
pseudo-Hilbert ordering and multi-stage input buffering techniques
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in MemXCT. We compare the performance of our computational
kernels on KNL and several generations of GPUs, and demonstrate
scaling up to 4096 nodes using ALCF Theta (KNL) and NCSA Blue
Waters (GPU) systems. We show that MemXCT can reconstruct a
large-scale (11Kx11K) mouse brain tomogram in ~10 seconds using
4096 KNL nodes: the largest iterative reconstruction ever achieved
in near-real time.
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