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Abstract— Memory-bound implementation of iterative x-ray
image reconstruction requires explicit sparse-matrix represen-
tation of the backprojection operator. Naive construction of
the backprojection matrix has either a high computational
complexity or race conditions, constituting a bottleneck for effi-
cient implementation and parallelization. This paper presents a
multilevel algorithm for low-complexity and parallel construction
of the x-ray backprojection matrix. Results demonstrate 1,247x
parallel speedup on up to 64 Intel Knights Landing nodes.

I. INTRODUCTION

Iterative x-ray reconstruction involves projection and back-
projection operations in each iteration, whose memory-bound
implementations require explicit sparse matrix representations.
The projection matrix can be constructed with a ray-tracing
algorithm. A fast ray-tracing has O(IN M) computational com-
plexity, where N is the number of pixels in one dimension
of the imaging domain and M is the number of illuminating
rays. The backprojection matrix can be trivially constructed
by transposing and scaling the projection matrix, however,
the sparse matrix transposition suffers from race conditions,
and therefore is not parallelizable. Advanced approaches for
general sparse matrix transforms are proposed [1], neverthe-
less, their complexity are not optimal since they do not exploit
ray-tracing nature of the problem. Another parallel approach
for the matrix construction is to test each pixel with all rays
to find out which rays cross a given pixel. The testing can
be performed with a line clipping, e.g., Liang-Barsky [2],
algorithm, which also gives the intersection length. However,
the computational complexity of a naive testing algorithm
is O(N2M) since each pixel tests all rays. In this paper,
we propose a multilevel algorithm for obtaining O(NM)
computational complexity by exploiting the ray-tracing nature
of the problem.

II. MULTILEVEL CONSTRUCTION OF THE
BACKPROJECTION MATRIX

Consider a scanning scenario where the imaging domain
is discretized with N x N pixels and is scanned by M
illuminating rays. A naive construction of the backprojection
matrix tests all rays for each pixel to find out the crossing rays,
yielding O(N2M) operations. However, a multilevel testing
hierarchically partitions the imaging domain into subdomains,
and lets each subdomain tests only those rays which crosses
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Fig. 1. Multilevel partitioning of the scanning geometry. Children subdo-
mains test rays that crosses their parents only.

its parent subdomain. The domain partitioning is performed in
a top-down fashion until the rays which crosses each pixel-
level subdomain is found. As a result, the multilevel testing
performs O(N M) operations by avoiding redundant testings.

Fig. 1 depicts the multilevel construction of the backprojec-
tion matrix for a scanning geometry with N =4 and M = 12.
Initially, the top-level subdomain is considered, where all rays
crosses the imaging domain (which is trivial). Then, level-
1 subdomains are tested with the rays crossing the top-level
subdomain. Secondly, level-2 subdomains (corresponding to
pixels) are tested with rays crossing their level-1 parents. For
example, pixel O tests only rays 0, 1, 4, 5, 8, 9, and 10, instead
of testing all rays from O to 11.

Fig. 1 also lists ray indices that crosses subdomains at each
level. In the pixel level, these the ray indices correspond to the
row indices of non-zero elements of the sparse backprojection
matrix. The non-zero elements store the length of pixel-ray
intersections, which are found in the last step of the matrix
construction. Efficient representation of the sparse matrix is
achieved with compressed sparse row (CSR) format, where the
index and weight data structures are linearized and the starting



index of each row are stored in a displacement array. It is also
worth noting that the proposed algorithm preserves the order
of rays, which is useful for applications where preserving data
locality is important.

In the multilevel testing scheme, number of subdomains
quadruples and the number of rays per subdomain decreases
approximately by half at each increasing level, and therefore
the number of tests doubles. As a result, there are O(log N)
levels and the total number of tests is O(NAM). On each
level, testings are parallelizable over the subdomains, where
the multilevel scheme provides good granularity for paral-
lelization, especially at the lower levels with large number of
subdomains. The proposed implementation no data duplication
or race conditions, and therefore suitable for massively-parallel
computing architectures.

III. SCALING RESULTS

For demonstrating performance the proposed multilevel
matrix reconstruction algorithm, we perform two set of exper-
iments on Intel Knights Landing (KNL) nodes with 64 cores
each. In the first experiment, we show the asymptotic scaling
by constructing projection and backprojection matrices for
various sizes of problems. In the second experiment, we show
the parallel efficiency by performing matrix constructions
among various number of cores.
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Fig. 2. Sequential construction times of projection and backprojection
matrices. The multilevel construction scales with O(N3). Constuction with
matrix transposition also scales with O (N’ 3), however, it is not parallelizable.

Fig. 2 shows sequential reconstruction times of projection
and bakcprojection matrices. In the experiments, the rays
perform a raster scan with [N projections and each projection
involves NN rays. Consequently, the number of rays is equal to
the number of pixels, i.e., M = N x N, so that the imaging
problem is not under- or over-determined. The projection
matrix is constructed by a ray-tracing algorithm and the
backprojection matrix is constructed by three algorithms: ma-
trix transpose, single-level (naive), and multilevel (proposed).
The figure shows the scalings of single-level and multilevel
algorithms are in a good agreement with O(N*) and O(N?)
curves. For the case of V = 256, the naive and proposed
algorithms take 30 minutes and 33 seconds, respectively,

whereas the matrix transpose takes just a second. However,
the traspose algorithm is not parallelizable and therefore is
not suitable for a parallel implementation.

Fig. 3 shows the parallel matrix construction times for
N = 512 on various number of cores. From sequential to 64
cores, OpenMP threads are employed on a single node. From
128 to 4,096 cores, MPIxOpenMP programming is used to
distribute the threads among distributed-memory nodes, where
each node is employed with 64 threads. The figure shows that
the matrix construction speeds up 48.2x on 64 cores (with 75%
efficiency) and 1247x on 4096 cores (with 30% efficiency).

The inefficiency at high number of cores is mainly due to
the low granularity of the top levels. For example, level 3
has only 64 subdomains and therefore it can be parallelized
over 64 cores at most. In this problem, the partitioning yields
10 levels, however, only the bottom three levels has enough
subdomains to be parallelized among 4,096 threads.
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Fig. 3. Massively-parallel construction times of projection and backprojection
matrices. Both constructions scales well up to 4,096 cores on 64 KNL nodes.

IV. CONCLUSIONS

For memory-bound iterative x-ray image reconstruction,
the explicit sparse backprojection matrix is required. Naive
methods for constructing the sparse matrix has either a high
computational complexity or race conditions. For overcoming
the bottleneck, a multilevel algorithm is proposed for low-
complexity and massively parallel construction of the back-
projection matrix. By a set of experiments, we demonstrate
the O(NM) computational complexity and 1247x parallel
speedup on 64 KNL nodes for the proposed algorithm.
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