
Real-Time Data Analysis and Autonomous Steering
of Synchrotron Light Source Experiments

Tekin Bicer∗†, Doga Gursoy†, Rajkumar Kettimuthu∗‡, Ian T. Foster∗‡§,
Bin Ren¶, Vincent De Andrede† and Francesco De Carlo†

∗Mathematics and Computer Science Division Argonne National Laboratory, Lemont, IL 60439
Email: {bicer, kettimut, foster}@anl.gov

†X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont, IL 60439
Email: {dgursoy, vdeandrade, decarlo}@aps.anl.gov

‡Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL 60637
§Department of Computer Science, University of Chicago, Chicago, IL 60637

¶Computer Science Department, College of William & Mary Williamsburg, VA 23185
E-mail: bren@cs.wm.edu

Abstract—Modern scientific instruments, such as detectors at
synchrotron light sources, can generate data at 10s of GB/sec.
Current experimental protocols typically process and validate
data only after an experiment has completed, which can lead
to undetected errors and prevents online steering. Real-time
data analysis can enable both detection of, and recovery from,
errors, and optimization of data acquisition. We thus propose an
autonomous stream processing system that allows data streamed
from beamline computers to be processed in real time on a
remote supercomputer, with a control feed-back loop used to
make decisions during experimentation. We evaluate our system
using two iterative tomographic reconstruction algorithms and
varying data generation rates. These experiments are performed
in a real-world environment in which data are streamed from a
light source to a cluster for analysis and experimental control.
We demonstrate that our system can sustain analysis rates of
hundreds of projections per second by using up to 1,200 cores,
while meeting stringent data quality constraints.

I. INTRODUCTION

X-ray photon sources are crucial tools for addressing grand
challenge problems in the life sciences, energy, climate change,
and information technology [1, 2]. Beamlines at such facilities,
which are located in many countries worldwide, use various
methods to collect data as samples are illuminated with
an intense x-ray beam. Increasing the productivity of these
instruments and improving the quality of science being done
at these facilities will have far-reaching benefits.

Scientists who run experiments at beamlines want to collect
the maximum information possible about the material under
study, in as little time as possible. However, data analysis
typically occurs only after acquisition is complete, meaning
that experiments are run “blind.” Thus, scientists do not know
whether they have modified the specimen by beam damage
or spent considerable time scanning insignificant areas while
collecting insufficient detail from crucial features or at a critical
time point in a dynamic specimen. The ability to analyze data
produced by detectors in near-real time could enable optimized
data collection schemes, on-the-fly adjustments to experimental
parameters, early detection of and response to errors (saving

both beam time and scientist time), and ultimately improved
productivity.

Real-time analysis is challenging because of the vast
amounts of generated data that must be analyzed in extremely
short amounts of time. Detector technology is progressing at
unprecedented rates (far greater than Moore’s law), and modern
detectors can generate data at rates of multiple gigabytes per
second. For example, a tomography experiment at the Ad-
vanced Photon Source (APS) at Argonne National Laboratory
can generate data from 8 MB/sec (e.g., imaging of cement
hardening, 1 projection/sec for two days) to 16 GB/sec (fast
imaging up to 2,000 projections/sec for short time intervals),
where experiments with 100–200 projections/sec are common.
The computational power required to extract useful information
from these streaming datasets in real time almost always
exceeds the resources available at a beamline. Thus the use of
remote HPC facilities for analysis is no longer a luxury but a
necessity.

A number of challenges arise in using remote HPC facilities
for real-time analysis, including on-demand acquisition of
compute and network resources, efficient data streaming from
beamline to HPC facility, and analysis methods that can keep
up with the data generation rates so that timely decisions can
be taken. In this work, we focus on the last challenge because
we believe that this is a crucial gap in current knowledge.

The primary contributions of this work are threefold. (1)
We present an innovative distributed stream processing system
for light source data analysis. Our system considers all three
stages that are required for analyzing and steering light source
experiments: data acquisition, real-time data analysis, and
experiment control. We implement two iterative algorithms for
tomographic reconstruction, a widely used data analysis appli-
cation at synchrotron light sources, and scale their execution in
a streaming setting. (2) We demonstrate experimental steering
for light source experiments by using a control-feedback
loop, with a controller that analyzes reconstructed images
and applies an image quality metric to determine when to
finalize an experiment. (3) We extensively evaluate our system

Fig. 1: Basic layout of a tomography setup and demonstration
of the measurement process. The sample is placed on a rotary
stage and is illuminated by an x-ray beam (shown in pink)
as the stage is rotated in uniform increments. The transmitted
photons are collected by using a detector, resulting in x-ray
projections. The cross section of the sample is highlighted to
show how a projection (shown in blue) is formed.

in a real-world light source environment and demonstrate
that our methods can achieve streaming reconstruction and
analysis rates sufficient to support real-time steering of light
source experiments. We believe that this is the first work
that enables real-time experimental steering using large-scale
compute resources for synchrotron light source experiments.

The rest of this paper is as follows. We provide background
information on our target data analysis problem, tomographic
image reconstruction, in Section II. We introduce our system
architecture and the integration of its components in Section III,
and present its evaluation in Section IV. We discuss related
work in Section V, and we present our conclusions in Sec-
tion VI.

II. BACKGROUND

We briefly explain the tomographic data acquisition and mea-
surement process and then describe the image reconstruction
problem of recovering an object from measurement data.

Figure 1 shows a typical tomography experiment. An object
placed on a rotary stage is illuminated by an x-ray beam and
the transmitted photons are collected by using a detector. Since
photons attenuate as they pass through the object, the measure-
ments are proportional to density: that is, measurements from
dense or thicker regions lead to low detector readings, whereas
less dense or thin regions lead to high readings.

The tomographic data acquisition process requires rotating
the stage in multiple known increments (degrees) around a
rotation axis while collecting data (projections).

A. Measurement Process

The Radon transform lies at the heart of the x-ray tomogra-
phy measurement process. Its discovery dates back to Johann

Forward
model

Inverse
model

Stop?

Compare
Current
update

Input
data

Output
data

YesNo

1 2

3

Input
DataProjections

Si
no

gr
am

s

Fig. 2: Schematic of the iterative reconstruction process. (1) An
initial guess for the model estimates is used to simulate data
using the forward model; (2) the simulated data are compared
with the measured data; and (3) each model estimate (i.e.,
direction and step size for each parameter) is updated, based
on the employed algorithm, until a stopping criterion is met.

Radon’s demonstration that a differentiable function on R2 can
be uniquely determined from its integrals over lines in R2 [3].
The theory holds for three- or higher-dimensional objects, but
for simplicity we present only the two-dimensional case here.
Let f be a 2D function (e.g., specimen density) representing
an unknown arbitrary object. That is, suppose f(x, y) defines
a density distribution of a sample at spatial coordinates (x, y).
The two-dimensional Radon transform of f is given by

pθ(s) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ − y sin θ − s)dxdy, (1)

where pθ(s) is commonly referred to as the sinogram and θ
and s are the sinogram parameters. In tomography, pθ(s) is
related to the measurement data through the Beer-Lambert law:

Iθ(s) = I0(s) exp [−pθ(s)] , (2)

where I0(s) is the incident x-ray illumination on the sample
and Iθ(s) are the collected measurements at a number of
different θ angles as a result of a tomographic scan.

B. Image Reconstruction

The image reconstruction problem requires recovery of
f(x, y) from pθ(s) = − log [Iθ(s)/I0(s)]. Numerous methods
are suitable for this task; filtered back projection (FBP) and
iterative reconstruction are the most commonly used.

FBP has been the traditional method of choice for re-
constructing objects because of its ease in implementation
and satisfactory computation speed. However, it has signifi-
cant disadvantages considering real-world constraints. First,
FBP requires a sufficient number of projections before it
can reconstruct an object successfully. This requirement is
problematic for real-time reconstruction, since only a limited
number of projections may be available to process at any given
time. Second, characteristics of the target specimen might
prevent collection of enough projections, especially for low-
dose tomography applications. Third, FBP is more susceptible
to errors and noise in measured data, which are common due
to experimental limitations at synchrotron light sources.

In contrast, iterative reconstruction algorithms can provide
better image quality, albeit at the cost of more computing.
Iterative methods converge to an optimum solution using

advanced object and data models and can provide better image
quality than does FBP on a limited number of projections.

Although many variations exist, the basic iterative recon-
struction method involves three major steps, as depicted in
Fig. 2. First, an initial guess of the volume object, which
might simply be an empty volume, is used to calculate the
simulated data through a forward model. Second, the simulated
data are compared with the measured data. Third, an update
of each model estimate is performed based on the employed
algorithm. Reconstruction of an object might require hundreds
of iterations, depending on the experiment and sample.

The earliest and most basic form of iterative reconstruction is
the algebraic reconstruction technique (ART), which involves
solving a sparse linear system of equations in the form of
Af = p where p is the projection data, A is the forward
projection operator, and f is the unknown 3D object to be
determined. While ART provides satisfactory images and has
a fast convergence rate, the iterations must be stopped before a
deteriorating “salt and pepper” or “checkerboard” effect begins
to degrade the object estimate. A variation of the ART method
is the simultaneous iterative reconstruction technique (SIRT)
in which the updates to the solution are computed by taking
into account all rotation angles simultaneously in one iteration,
as follows:

fk+1 = fk + λAT (p−Afk). (3)

As in the ART method, a relaxation parameter λ can be
used to control convergence in certain cases. SIRT typically
produces better quality reconstructions than does ART and is
more robust to outliers in the measurement data. In our system,
we use more advanced iterative reconstruction algorithms.
However, the main computational steps remain the same.

C. Organization of Tomography Datasets

A tomography dataset that is generated at synchrotron light
sources typically consists of a set of 2D projections. These
projections are organized similar to input data in Fig. 2.
The parallelization of reconstruction at sinogram level is
trivial, since there is no dependency between neighboring
sinograms. However, once a sinogram is distributed among
several processes, those processes must synchronize at the end
of each iteration.

The reconstructed image dimensions are determined accord-
ing to the projection size; specifically, if projection dimensions
are (y,x), then the reconstructed image dimensions typically are
set to (y,x,x). For instance, if the dimensions of a tomography
dataset are (180, 2,048, 2,048), that is, 180 projections where
each of them has (2,048, 2,048) pixels, then the reconstructed
image’s dimensions are (2,048, 2,048, 2,048). Notice that the
size of the reconstructed image is independent of the number
of collected projections.

III. SYSTEM DESIGN

Our system consists of three main components: (1) data
acquisition and distribution, which manages data collection
from detectors and the distribution of those data to analysis

Fig. 3: Reconstructed image of a shale sample with only 30
streamed projections: (a) fixed angle, offset=1◦; (b) interleaved,
offset=5◦; (c) optimized interleaved. The range of angles is
[0,180)◦.

processes; (2) the analysis system, which is responsible for
analysis and reconstruction of streaming data; and (3) the
controller, which analyzes reconstructed data. In the following
subsections, we explain each of these components in detail.

A. Data Acquisition and Distribution

Data acquisition at current tomography beamlines is typi-
cally performed with one of two methods: fixed angle rotation
or interleaved.

With fixed-angle rotation, acquisition starts at a specified
starting point and then increments by a specified angle offset
to a specified ending point. If, for example, the starting and
ending angles are 0◦ and 180◦, respectively, and the offset is
1◦, this strategy results in a sequence of 180 projections at (0,
1, 2, . . . , 178, 179)◦.

In contrast, interleaved data acquisition collects data in
several rounds, each involving a full rotation with a wider
angle offset and with the starting angle selected to collect a
disjoint set of projections. For example, with an offset of 5◦

and the starting angle advanced by 1◦ in each round, then after
five rounds we have 180 projections at (0, 5, 10. . . . , 175, 1,
6, . . . , 174, 179)◦.

If, as in most beamlines today, processing occurs only
after data acquisition has completed, the choice of acquisition
scheme has little impact on most analysis tasks. For real-
time stream reconstruction, however, interleaved acquisition
is superior to fixed angle, since it significantly improves the
initial convergence rate of reconstruction.

In our system, we use an optimized version of interleaved
data acquisition, in which the offset starts from the widest angle
and is halved after each round. For the previous example, this
strategy results in a sequence of projections at (0, 90, 45, 135,
22, 67, . . . , 179)◦. One potential problem with this approach is
that if too many projections are collected, it collects projections
with very small angles. This problem can be addressed by
specifying an offset threshold below which the data acquisition
strategy changes from optimized interleaved to interleaved.

Fig. 4: Distributed stream reconstruction workflow with control feedback loop. Data acquisition partitions projections as
they become available and streams the partitioned chunks to the reconstruction processes, pj . The reconstruction processes
store these chunks in a circular buffer, cbuf. Each time s chunks are received, the reconstruction engine performs a parallel
reconstruction operation using ri−1 (i is the current iteration) and cbuf, and then sends the newly reconstructed image to the
controller, which keeps w reconstructed images in its own circular buffer. The controller performs a similarity check on each
new image; if the similarity score exceeds a user-defined threshold, a finalize signal is sent to the data acquisition process.

Figure 3 shows the reconstructed images that are obtained
when 30 projections are collected with the aforementioned
data acquisition methods. The optimized interleaved acquisition
method, (c), provides the best image quality, primarily because
it collects projections over multiple rounds and thus obtains a
better sampling of angles, whereas the other methods perform
only one partial round.

The projection generation is monitored by a data acquisition
process. Each generated projection is read from the data
acquisition machine’s memory and distributed equally over
the reconstruction processes. The distribution is performed
along the y dimension of the projection. For example, if the
generated projection’s dimensions are 2048×2048 and there
are 128 reconstruction processes, then the projection data are
partitioned into 128 chunks, each of size 16×2048. These
chunks are then streamed to the corresponding processes for
reconstruction. This process is illustrated with 1 in Fig. 4.

B. Analysis System

Algorithm 1 presents pseudocode for the analysis system,
2 in Fig. 4. Step 1 initializes the communication structure by

using the CommInit() function to establish two communica-
tion channels: one with other reconstruction processes (using
MPI) and another with control and data acquisition processes
(using the ZeroMQ distributed messaging library [4]). Step
2 sets up communication with the data acquisition machine,
allocating a circular buffer cbuf and setting its two parameters:
l, which determines the number of chunks that can be stored in
the buffer, and s, which sets up the frequency of reconstruction
operation. The function SetupComm accomplishes these tasks
and returns projection metadata, PMetadata.

One key piece of information carried in PMetadata, the
dimension of the projections, is used to initialize the buffers
and data structures used in the intermediate processing layer
(steps 3 and 4). This layer extends our MapReduce-like process-

Input : DAQAddr // Data acq. process address
ContAddr // Controller process address
t, l, s // # threads; w. len; step size
FProj, BProj // Comp. kernels
RImage // Image with initial values

Output : RImage // Final reconstructed image

1 CommInst ← CommInit ();
2 (TStreamInst, PMetadata)← SetupComm (DAQAddr,

CommInst.Rank, CommInst.World, l, s);
3 ReconSpace ← InitReconSpace (PMetadata);
4 ReconEngine ← InitReconEngine (ReconSpace, t);
5 while true do
6 CBuf ← TStreamInst.ReadCBuf () ;
7 if CBuf == NULL then
8 Break ;
9 ReconEngine.StreamRecon (CBuf, RImage, FProj) ;

10 ReconEngine.ParallelLocalSynch () ;
11 if CommInst.SharedImage (PMetadata) then
12 CommInst.GroupSynch

(ReconSpace.MainReplica) ;
13 ReconEngine.Update (RImage, BProj) ;
14 ReconSpace.ResetReplicas () ;
15 CommInst.Publish (RImage) ;
16 end

Algorithm 1: Pseudocode for runtime system

ing structure, exposing an API to its users for parallelization
of reconstruction algorithms [5–7]. The extended processing
layer overlaps data retrieval, chunk distribution, analysis,
and synchronization operations to accommodate analysis of
streaming data. In order to provide maximum parallelization,
this layer uses full replication, in which each thread (map task)
operates on its own buffer (image replica, i.e., rep# in Fig. 4).

The image replicas are allocated, set up, and managed in
the reconstruction space (step 3). The reconstruction space is
then passed to the reconstruction engine, where later threads
are initialized and executed on their corresponding replicas
(step 4). Once all buffers are set and threads are initialized,
the analysis system waits for data acquisition to start streaming
chunks (step 5).

The analysis system reconstructs RImage (ri in Fig. 4)
repeatedly until the ReadCBuf() function returns a null
value. The number of reconstruction computations performed
depends mainly on the (unknown) number of streamed chunks
and the cbuf’s s parameter. Specifically, a reconstruction
operation is triggered after receiving each s chunks. Notice
that s and l also define the number of times each chunk is
processed. For example, if l = 24 and s = 2, then cbuf
contains 24 chunks at any given time during the execution.
Since s is set to 2, the reconstruction operations are triggered
after receiving every other chunk. Therefore, each chunk is
processed 24/2=12 times before it is replaced by another.

Once a ReadCBuf function returns with a valid CBuf,
the analysis system’s ReconEngine starts scheduling
threads with the StreamRecon() function. Each sched-
uled thread reads a portion of the data chunk from CBuf
and applies the user-defined FProj function (shown as
ForwardProjection in Fig. 4) to its corresponding replica.
Threads use their assigned chunk data and the partially
reconstructed 3D image (RImage) from the previous iteration
to update their replicas.

After all chunks in CBuf are processed, threads perform
parallel local synchronization, ParallelLocalSynch().
The replicas are then merged and reduced with a user-defined
operation (sum in most reconstruction algorithms). The result
is a single replica, MainReplica, in ReconSpace. If any
3D image slice is being reconstructed by multiple processes, a
group synchronization is also performed and MainReplica
updated at all corresponding processes. The MainReplica
is then used with the user-provided BProj function to update
and generate the new 3D image (RImage), step 13.

Replicas in the reconstruction space are then reset for the
next iteration, and the newly reconstructed image is sent to
the subscribed controller process.

C. Controller

The controller, 3 in Fig. 4, receives and analyzes images
as they are produced by reconstruction processes. It can then
steer experiments according to user-specified constraints. Here,
we focus on a steering scenario in which the controller aims to
finalize data acquisition once the reconstructed image reaches
a specified quality level. This strategy can enable scientists
to collect only a sufficient number of projections from the
specimen, for example to minimize dose exposure, experiment
time, or data analysis time.

Our approach is based on comparing each reconstructed
image with those obtained from previously streamed data
and observing the change in the similarity index. Since early
sets of projections have more influence over the reconstructed

image than later sets have, the similarity scores of consecutive
reconstructed images initially show higher variability. This
trend decreases as more projections are processed and the
reconstructed image values converge to a refined solution.

The controller stores reconstructed images in a circular
buffer. Then, for each incoming image ri, a similarity score
between ri and ri−k is calculated (where k < i). We denote
this comparison as si = compare(ri, ri−k, scale), in which
si is the similarity score and scale is the granularity of the
comparison. A higher-scale value causes smaller features to
be compared and reported in the similarity score. Depending
on the si and user-provided similarity score constraint, the
controller sends a finalize signal to the data acquisition process.

We use the Multi-Scale Structural Similarity Index (MS-
SSIM) [8] to compute the similarity score. MS-SSIM consid-
ers three criteria at multiple scales that are crucial for the
quantifying the quality of reconstructed tomography data [9]:
luminance, structure, and contrast. The resulting similarity
score s ranges over [0,1], with 1 indicating a perfect match.

The k parameter defines how similarity scores vary between
compared images and thus is important to get right. For
example, when k = 1, consecutive images are compared,
which typically yields a high similarity score irrespective of
the number of projections processed. This, in turn, makes it
difficult to reason about improvements in image quality. When
k is set to a sufficiently large number, however, the compared
images will have quantifiable dissimilarities up to a point where
their values are converged. The selection of k is not trivial:
it depends on the data acquisition technique as well as the
window length and step size used by the reconstruction process.
Specifically, while the data acquisition technique determines
which projections contribute to reconstruction process, the
window length and step size define the number of contributing
projections and the frequency of image reconstruction. In our
system, we set the parameter k to the window length used
by the reconstruction process (i.e., l) in order to improve the
variance between consecutive similarity scores.

All three system components are nonblocking; thus, commu-
nication between and computation within the components can
be overlapped. We use message sequence numbers (derived
from projection ids and reconstruction processes’ ranks) and
the underlying communication library, ZeroMQ, to ensure
exactly-once processing semantics.

IV. EVALUATION

We conducted extensive experiments to evaluate both the
computational performance of our system and the quality
of the reconstructed images that it generates. We performed
these experiments in a real-world environment where data are
streamed from the APS at Argonne National Laboratory and
analyzed at the visualization cluster of the Argonne Leadership
Computing Facility (ALCF). The data acquisition machine,
located at the APS, is equipped with a 10 Gb ethernet card.
The ALCF analysis cluster, located 1 km distant from the APS,
comprises 126 compute nodes, each with 12 cores (two 2.4
GHz Intel Haswell CPUs, each with 6 cores) and 384 GB of

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

5 10 25 50 100
 0

 20

 40

 60

 80

 100

 120

T
im

e
 (

s
e

c
s
)

Number of columns C=256

Distributed time
Co-located time

Distributed p/s
Co-located p/s

 0

 10

 20

 30

 40

 50

 60

 70

5 10 25 50 100
 0

 10

 20

 30

 40

 50

 60
512

 0

 50

 100

 150

 200

 250

 300

5 10 25 50 100
 0

 2

 4

 6

 8

 10

 12

 14
1024

 0

 200

 400

 600

 800

 1000

 1200

5 10 25 50 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

S
u

s
ta

in
e

d
 #

 p
ro

je
c
ti
o

n
s
/s

e
c

2048

(a) Performance with the MLEM reconstruction algorithm.

 0

 5

 10

 15

 20

 25

 30

5 10 25 50 100
 0

 20

 40

 60

 80

 100

 120

 140

 160

T
im

e
 (

s
e

c
s
)

C=256

 0

 20

 40

 60

 80

 100

 120

5 10 25 50 100
 0

 5

 10

 15

 20

 25

 30

 35

 40
512

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 10 25 50 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
1024

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

5 10 25 50 100
 0

 0.5

 1

 1.5

 2

 2.5

S
u

s
ta

in
e

d
 #

 p
ro

je
c
ti
o

n
s
/s

e
c

2048

(b) Performance with the PML reconstruction algorithm.

Fig. 5: Reconstruction performance for (a) MLEM, top, and (b) PML, bottom, on phantoms with 180 projections, 100 sinograms,
and variously 256, 512, 1,024, and 2,048 columns, from left to right. Each graph gives results for both the distributed case
and the co-located case, with the x-axis giving the number of compute nodes; the bars and the left y-axis the elapsed time in
seconds; and the lines and right y-axis the number of projections processed per second (p/s).

memory. The cluster nodes use FDR InfiniBand for internode
communication and have a 10 Gb ethernet card for fast external
data transfer.

To differentiate between the impact of computation and data
transfer on end-to-end performance, we conducted experiments
in two modes: a distributed mode, in which data are acquired
at the light source, and a co-located mode, in which data are
already in memory on the analysis cluster before reconstruction.
To ease system evaluation in distributed mode, we store
previously collected/generated data in the data acquisition
machine’s memory, from where we stream them to the analysis
cluster.

We performed experiments for several datasets, both phan-
toms and real samples, with different dimensions and thus
different computational demands. We evaluated distributed
versions of two iterative reconstruction algorithms: Maximum
likelihood expectation maximization (MLEM) [10] and pe-
nalized maximum likelihood (PML) [11]. MLEM performs
reconstruction operations on a single pixel at a time; PML
requires neighboring pixel information for its updates and thus
is more computationally demanding.

A. Stream Reconstruction Performance

We measured the end-to-end performance for four phantoms,
with sizes (180, 100, C), C∈{256, 512, 1,024, 2,048}, and for
both the MLEM and PML reconstruction algorithms, for a total
of eight algorithm-phantom combinations. In each case, we set

the window length to 24 and step to 1 and thus processed each
projection 24 times.

We present our results in Fig. 5. Each of the eight graphs
corresponds to a different algorithm-phantom combination.
In each graph, we show for each of 5, 10, 20, 50, and
100 nodes (i.e., 60, 120, 240, 600, and 1,200 cores) four
values, namely, the elapsed time and the processing rate in
each of the distributed and co-located modes. Distributed time
is the total time taken, encompassing both communication
and processing, when data are collected at the beamline
computer and processing occurs at the compute cluster, while
colocated time is the time taken when data are preloaded on the
compute cluster and thus no communication costs are incurred.
Similarly, distributed p/s and co-located p/s give the number
of projections processed per second in the distributed and co-
located cases, respectively. For example, we see in the upper
left graph (MLEM, C=256) that when running on five nodes,
our system takes ∼16 seconds in distributed mode, which,
since all phantom datasets have 180 projections, corresponds
to 180 projections/16 seconds = ∼11 p/s.

Figure 5(a) presents system performance when using the
MLEM reconstruction algorithm. For dataset C=256, the
projection consumption rate increases up to the 50-node
configuration, in which the system can sustain processing 54
p/s. The 100-node configuration, however, shows a significant
performance decrease. The main reason for this behavior is
the increased communication cost. Each node in the 100-node
configuration operates only on 180×256 ray-sum values, taking

less than 1.2 seconds in total. On the other hand, transferring
these data from the data acquisition machine to the 100 nodes
introduces ∼241% overhead, which can also be observed from
the gap between distributed and co-located rates. To further
understand the communication overhead, we performed

In the C=512 dataset, we see better scalability, as the
computation time dominates the end-to-end time. The 100-node
configuration, in this case, provides a 9.1x speedup relative to
five nodes; while not perfect, this speedup is better than that
seen for 100 nodes and C=256. For the remaining datasets,
C∈{1,024, 2,048}, the performance increase is consistent with
the increasing number of nodes. The strong scaling efficiencies
for these datasets range from 86.1% to 98%; one exception
is the C=1,024 dataset on 100 nodes, in which the scaling
efficiency is 74.8%. Overall the distributed p/s values range
from 3 p/s to 54 p/s, with the highest rates observed with the
50- and 100-node configurations.

Figure 5(b) shows PML results for the same experiments.
We see a similar performance trend to that observed for
MLEM, but with slightly lower reconstruction rates due to
the fact that PML is computationally more demanding. For
the C=256 dataset, the 50-node configuration provides the best
performance with 36.7 p/s, which is 33.3% less than for the
same MLEM configuration. On 100 nodes, the rate drops to
31.7 p/s, on par with the 32.7 p/s seen for MLEM, indicating
that execution is communication bound.

With C=512, the scaling efficiency ranges from 81.7% to
98.2% on 10, 25, and 50 nodes relative to performance on
five nodes. On 100 nodes, the total computation time is 4.69
seconds; here communication overhead becomes significant,
and efficiency drops to 68.5%. Still, the system can sustain a
processing rate of 23.6 p/s with 100 nodes, a speedup of 1.6
over that seen on 50 nodes.

For C=1,024 and 2,048, speedups and scaling efficiencies
are higher, as computation dominates overall execution time.
For C=1,024, scaling efficiencies are 82.5–98.4%. On 100
nodes, we see a reconstruction rate of 7.1 p/s: 16.5x higher
than on five nodes. Similar performance results are observed
for C=2,048, with a scaling efficiency of more than 87% for
all configurations. The highest reconstruction rate is 1.93 p/s
on 100 nodes. Here the difference between the distributed and
co-located rates is only 0.11 p/s.

B. Performance Effect of Runtime Parameters

We have seen that system performance is sensitive to dataset
sizes, number of compute nodes, and communication overhead.
Overall system performance can also be altered with runtime
parameters. Specifically, the window length (l) and step size (s)
can be adjusted to match the rate at which a detector generates
projections.

We show in Fig. 6a the effect on the reconstruction rate
of changing the l and s parameters for the C=1,024 dataset.
The contour lines show the boundaries of rates with respect to
different l and s settings. For the extreme case, where l=12 and
s=12, system performance is maximized at 204.1 p/s. Since
l sets the number of projections that are processed for each

(a)
C=1,024

1 2 3 4 5 6 7 8 9 10 11 12

12

18

24

30

36

42

25

50 75

100

100
100

125

125

150

25

50

75

100

125

150

175

200

(b)
C=2,048

1 2 3 4 5 6 7 8 9 10 11 12

12

18

24

30

36

42

 8

16 24

32

32

40
48

10

20

30

40

50

Fig. 6: Sustained p/s as a function of step size (x-axis) and
window length (y-axis) for two datasets, with dimensions (180,
100, C), C∈{1,024, 2,048}, when in distributed mode and
using MLEM on 100 nodes (1,200 cores). Color represents
p/s, which reaches 204 for C=1,024 and 55 for C=2,048.

reconstruction iteration, increasing this parameter elevates the
computational demand and thus reduces reconstruction rates.
At the other end of the spectrum, where l =42 and s=1,
performance drops to 8.82 p/s. Thus, setting l and s to 12
can provide a 23.1x higher reconstruction rate relative to the
l=42 and s=1 configuration.

Figure 6b shows results when C=2,048. We first notice
the similarity of color mapping between Figs. 6(a) and (b),
indicating that the distribution of computational demands for
different datasets follows the same trend. This insight can be
used to determine, with minimal effort, l and s parameters as
well as the amount of computational resources. Specifically,
if projection generation rate and projection dimensions are
known in advance (which are typically provided with detector
specs), a single experiment can provide sufficient information
to estimate reconstruction rates for the remaining l and s
combinations.

We again see the best performance when both l and s are
set to 12 for C=2,048: a reconstruction rate of 55 p/s. This
setting provides a 25.6x speedup relative to l=42 and s=1.
This speedup also supports the aforementioned statement on
performance estimation, since it is consistent with the measured
speedup for C=1,024 dataset.

While the l and s parameters can be used to adjust the
reconstruction rate, these parameters also affect the image
quality by determining the amount of new information used in
each reconstruction iteration. The appropriate balance between
image quality and the stream reconstruction performance
depends greatly on the use case. For instance, if the ultimate
goal is to reconstruct images with very small features, then
larger window lengths and small step sizes can help improve
achieved quality.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120 140 160 180

SQ
GTQ

P=45 P=90

P=135 P=180GT

Fig. 7: Quality tests for foam phantom. The x-axis in the
graph is the number of projections processed, and the y-axis is
the MS-SSIM similarity score: for SQ, between reconstructed
images only, and for GTQ, between the most recently recon-
structed image and ground truth. The images on the right show
the reconstructed images after processing 45, 90, 135, and 180
projections, respectively.

C. Quality Cutoffs for Experimental Steering

We next analyze the effect of stream processing on the
quality of reconstructed images. As mentioned in Section III-C,
we use MS-SSIM to compute similarity scores, in order to track
how reconstructed images vary during execution.

We first consider a foam phantom which captures some
common features, such as circles and pores, that occur in
samples analyzed at synchrotron light sources. These features
can be challenging to reconstruct: if the features in the sample
are small and spatially close, more iterations and projections
are required to distinguish them. We obtain 180 projections
from this phantom dataset, ordered according to the optimized
interleaved acquisition scheme. Each projection consists of a
single row with C=1,024 columns, meaning that the dataset has
dimensions (180, 1, 1,024). We denote the resulting projections
as pi, i ∈ {1, 2, 3, . . . , 180}.

We set the runtime parameters as l=24 and s=1; thus, when
each projection pi is received by a worker, an image ri is
immediately reconstructed and transferred to the controller
process for quality checking. Since l=24, the controller per-
forms a similarity comparison between ri and ri−24. We further
set scale=5, which causes MS-SSIM to check similarities
according to the smallest features in the sample, namely,
si = compare(ri, ri−24, scale = 5).

Figure 7 shows our results. We first consider SQ, similarity
calculated according to si = compare(ri, ri−24, 5). This score
increases rapidly at first, which is what we expect: since the
difference between the reconstructed image and ground truth
is initially large, the contribution of each new projection to
the reconstruction is high. This trend continues while pi<60

and then flattens off. However, subsequent projections still
contribute significantly to the reconstruction, as we observe
clear changes in the reconstructed image between ri=90 and
ri=135 (labeled P=90 and P=135 in the figure, respectively).
For ri>140, the similarity scores are fairly consistent at ∼0.98.

GTQ, in contrast, is similarity relative to a ground truth
image, rgt, that is, compare(ri, rgt, 5). We see that these
scores fluctuate in the 0.5-0.6 band for ri>140, indicating
that the contributions of projections after ri>140 are minimal.
We conclude that for samples with foamlike features, we can

0.6

0.8

40 60 80 100 120 140 160 180

0.975

0.98

0.985

0.99

0.995
SQ

P=90P=45

P=180P=135

Fig. 8: Quality tests for data collected from a shale sample at
the APS.

reasonably have the controller send a finalize signal to the data
acquisition process once a similarity score threshold of 0.95
is exceeded. For the foam phantom, this strategy results in the
data acquisition process halting at pi=140, providing a 1.29x
speedup for both data acquisition and analysis relative to a full
set of 180 projections.

In Fig. 8, we repeat the same experiment with a real-world
shale dataset. Since ground truth is not available here, only
SQ is shown. Much as with the phantom dataset, the similarity
score increases rapidly with the initial projections and then
flattens off after pi=60. Notice that after p60, the scale of the
y-axis in the figure is changed so that fluctuations in similarity
scores are more visible. We still observe slight increases in the
similarity scores up to pi=100; but after this point the changes
are minor (fluctuations), and we conclude that subsequent
projections are not necessary. Since the features in this sample
are much smaller and sparser than in the phantom data, MS-
SSIM shows higher similarity scores, close to 0.985. Collecting
100 rather than 180 projections provides a 1.8x speedup for
both data acquisition and analysis.

V. RELATED WORK

Real-time data analysis and computational steering have
been extensively studied in many fields [12–15]. Much recent
work focuses on in situ analysis of simulation data, where data
produced by simulation are analyzed on the same computer
while the simulation is running [16, 17]. Although some of
these works address problems that also occur in synchrotron
data analysis, experiment-specific constraints, data generation
rates, computational requirements, and available computational
resources in light source facilities create unique challenges [18],
as for example when working with large-scale brain imaging
and analysis of data from dose-sensitive specimens [19, 20].

Real-time steering in experimental science, especially in
scenarios involving large data, has received much less attention
than computational steering [21, 22]. At the SC’98 conference,
Laszewski et al. [21] demonstrated a system to do quasi-
real-time analysis of synchrotron light source data using
high-speed networks and computational grids. The National
Center for Microscopy and Imaging Research developed soft-
ware to integrate data acquisition from electron microscope,
computational resources, and visualization in a distributed
environment [23]. Although these works address some issues
relevant to synchrotron light source data problems, none
focuses on autonomous experimental steering using high-

performance computing resources. And much has changed
in terms of detector, compute, and network capabilities, as
well as the requirements and complexities within end-to-end
processing pipelines, since this pioneering work. For example,
the filtered back projection (FBP) technique used by Laszewski
et al. [21] for tomographic reconstruction of 3D images is no
longer viewed as effective [24]. Iterative reconstruction [25] is
preferred because it can reconstruct the image with many fewer
projections than FBP needs, reducing radiation exposure of the
samples. However, iterative reconstruction is computationally
more expensive and requires fine-grained parallelization for
real-time processing [5, 26–28].

Stevanovic et al. [29] use FPGAs for real-time analysis
and experimental steering at the ANKA synchrotron radiation
facility. FPGAs can provide timely feedback for light-weight
computational problems with small data, but data-intensive
analysis tasks are not suitable for these types of devices.

Accelerators, including Xeon Phi [30, 31] and GPUs [32, 33],
have been used extensively for high-performance reconstruc-
tion and analysis of x-ray images. Especially in medical
imaging, different iterative reconstruction approaches are im-
plemented and optimized for GPUs in order to generate high-
quality 3D images [34, 35]. In more recent work, Vogelgesang
et al. developed UFO, a computational framework for image-
processing algorithms, which used GPUs in streaming mode
to address synchrotron data analysis problems [36]. Although
GPUs can provide high computational throughput, they can
accommodate only small datasets and are not suitable for large-
scale tomography data.

The key aspect of experimental steering (the focus of this
work)—processing a data stream from a scientific instrument
in near-real time and making decisions—seems to have much
in common with many big data applications. According to
a NIST survey [37], 80% of big data applications involve
streaming, spurring the development of stream-processing
systems such as Twitter’s Heron [38], Googles Millwheel [39],
Spark streaming [40], and IBM Stream Analytics [41]. But the
streaming challenges in enterprise applications are different.
For example, individual events in enterprise streams tend to
be small: often only a few bytes.

Some of these tools may apply to sensor networks in
scientific domains (e.g., wide-area earthquake sensor net-
works [42, 43], Ocean Observatories Initiative [44], urban
observatories [45]) under certain conditions. However, light
source instruments can generate data at rates of gigabytes
per second and thus require complex, highly parallel analysis
involving communication among the threads and processes
used to perform the analysis.

Despite these efforts, real-time steering with control by ei-
ther humans or automated processing is currently not generally
available in experimental science environments.

VI. CONCLUSION

We have presented new methods for real-time data analysis
and experimental steering at synchrotron light sources. We
described an innovative distributed stream-processing system

that can use remote compute resources to meet the demanding
computational requirements of tomographic reconstruction
tasks. We implemented a control-feedback loop that uses a
similarity metric to evaluate the quality of reconstructed images
and that decides, based on that metric, when to terminate data
acquisition.

We demonstrated our system in a real-world environment in
which projection datasets are streamed from a data acquisition
machine at a synchrotron light source to a remote HPC cluster
for reconstruction and analysis. We evaluated our system
with two different iterative reconstruction algorithms, each of
which we validated from perspectives of both performance
and image quality with a variety of phantom and real datasets.
We showed that our system can achieve reconstruction rates
as high as 204.1 projections per second when using 1,200
cores. We further showed that our experimental steering
approach can reduce data acquisition time by 22–44% for the
datasets considered in our experiments by gracefully finalizing
data acquisition when reconstructed image quality exceeds a
specified threshold. This reduction in data acquisition time
translates to more efficient utilization of both scientist and
scientific instrument time.

Much of our work is retargetable to other synchrotron
light source analysis tasks. For example, the data acquisition
component can be used for any pixelated detector, and many
modalities can be implemented using our parallel processing
framework, including correlation analysis for x-ray photon
spectroscopy, ptychographic reconstruction, and fitting of flu-
orescence data.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific
Computing Research and Basic Energy Sciences, under Con-
tract DE-AC02-06CH11357. We gratefully acknowledge the
computing resources provided and operated by the Argonne
Leadership Computing Facility, which is a U.S. Department
of Energy, Office of Science User Facility, and experimental
facilities at the Advanced Photon Source.

REFERENCES

[1] “Next-generation photon sources for grand challenges in science
and energy,” https://science.energy.gov/∼/media/bes/pdf/reports/files/
Next-Generation Photon Sources rpt.pdf, 2009, Accessed: 2017-06-13.

[2] “The report of the BES advisory subcommittee on future x-ray
light sources,” https://science.energy.gov/∼/media/bes/besac/pdf/Reports/
Future Light Sources report BESAC approved 72513.pdf, 2013, Ac-
cessed: 2017-06-13.

[3] J. Radon, “On determination of functions by their integral values along
certain multiplicities,” Ber. der Sachische Akademie der Wissenschaften
Leipzig, vol. 69, pp. 262–277, 1917.

[4] iMatrix Corporation, “ZeroMQ: Distributed Messaging Library,” http:
//zeromq.org, 2014, Accessed: 2017-06-13.

[5] T. Bicer, D. Gursoy et al., “Rapid tomographic image reconstruction
via large-scale parallelization,” in European Conference on Parallel
Processing. Springer Berlin Heidelberg, 2015, pp. 289–302.

[6] W. Jiang, V. T. Ravi et al., “A Map-Reduce system with an
alternate API for multi-core environments,” in Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, ser. CCGRID ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 84–93. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2010.10

https://science.energy.gov/~/media/bes/pdf/reports/files/Next-Generation_Photon_Sources_rpt.pdf
https://science.energy.gov/~/media/bes/pdf/reports/files/Next-Generation_Photon_Sources_rpt.pdf
https://science.energy.gov/~/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
https://science.energy.gov/~/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
http://zeromq.org
http://zeromq.org
http://dx.doi.org/10.1109/CCGRID.2010.10

[7] T. Bicer, “Supporting data-intensive scientific computing on bandwidth
and space constrained environments,” Ph.D. dissertation, The Ohio State
University, 2014.

[8] Z. Wang, E. P. Simoncelli et al., “Multiscale structural similarity for
image quality assessment,” in 37th Asilomar Conference on Signals,
Systems, and Computers, vol. 2, Nov 2003, pp. 1398–1402 Vol.2.

[9] D. J. Ching and D. Gürsoy, “XDesign: An open-source software package
for designing X-ray imaging phantoms and experiments,” Journal of
Synchrotron Radiation, vol. 24, no. 2, pp. 537–544, 2017.

[10] J. Nuyts, C. Michel et al., “Maximum-likelihood expectation-
maximization reconstruction of sinograms with arbitrary noise distri-
bution using NEC-transformations,” IEEE Transactions on Medical
Imaging, vol. 20, no. 5, pp. 365–375, 2001.

[11] J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image
reconstruction using space-alternating generalized EM algorithms,” IEEE
Transactions on Image Processing, vol. 4, no. 10, pp. 1417–1429, 1995.

[12] D. M. Beazley and P. S. Lomdahl, “Lightweight computational steering
of very large scale molecular dynamics simulations,” in ACM/IEEE
Conference on Supercomputing, 1996, pp. 50–50.

[13] S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming
environment for computational steering,” in IEEE/ACM SC95 Conference,
1995, pp. 52–52.

[14] D. J. Jablonowski, J. D. Bruner et al., “VASE: The visualization and
application steering environment,” in Supercomputing ’93., Nov 1993,
pp. 560–569.

[15] J. Vetter and K. Schwan, “High performance computational steering
of physical simulations,” in 11th International Parallel Processing
Symposium, Apr 1997, pp. 128–132.

[16] P. Malakar, V. Vishwanath et al., “Optimal scheduling of in-situ analysis
for large-scale scientific simulations,” in SC15: International Conference
for High Performance Computing, Networking, Storage and Analysis,
Nov 2015, pp. 1–11.

[17] Y. Wang, G. Agrawal et al., “Smart: A MapReduce-like framework for
in-situ scientific analytics,” in SC15: International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2015,
pp. 1–12.

[18] T. Bicer, D. Gürsoy et al., “Optimization of tomographic reconstruction
workflows on geographically distributed resources,” Journal of
Synchrotron Radiation, vol. 23, no. 4, pp. 997–1005, Jul 2016. [Online].
Available: http://dx.doi.org/10.1107/S1600577516007980

[19] T. Bicer, D. Gürsoy et al., “Trace: A high-throughput tomographic
reconstruction engine for large-scale datasets,” Advanced Structural and
Chemical Imaging, vol. 3, no. 1, p. 6, 2017.

[20] D. Y. Parkinson, K. Beattie et al., “Real-time data-intensive computing,”
in AIP Conference Proceedings, vol. 1741, no. 1. AIP Publishing, 2016,
p. 050001.

[21] G. von Laszewski, M.-H. Su et al., “Real-time analysis, visualization,
and steering of microtomography experiments at photon sources,” in 9th
SIAM Conference on Parallel Processing for Scientific Computing, San
Antonio, TX, 22-24 Mar. 1999. [Online]. Available: http://cyberaide.
googlecode.com/svn/trunk/papers/anl/vonLaszewski-siamCmt99.pdf

[22] Y. Wang, F. De Carlo et al., “A high-throughput x-ray microtomography
system at the Advanced Photon Source,” Review of Scientific Instruments,
vol. 72, no. 4, pp. 2062–2068, 2001.

[23] P. J. Mercurio, T. T. Elvins et al., “The distributed laboratory: An
interactive visualization environment for electron microscope and 3d
imaging,” Commun. ACM, vol. 35, no. 6, pp. 54–63, Jun. 1992. [Online].
Available: http://doi.acm.org/10.1145/129888.129891

[24] A. Moscariello, R. A. Takx et al., “Coronary CT angiography: Image
quality, diagnostic accuracy, and potential for radiation dose reduction
using a novel iterative image reconstruction technique—comparison with
traditional filtered back projection,” European Fadiology, vol. 21, no. 10,
p. 2130, 2011.

[25] L. L. Geyer, U. J. Schoepf et al., “State of the art: Iterative CT
reconstruction techniques,” Radiology, vol. 276, no. 2, pp. 339–357,
2015.

[26] D. J. Duke, A. B. Swantek et al., “Time-resolved x-ray tomography of
gasoline direct injection sprays,” SAE International Journal of Engines,
vol. 9, no. 2015-01-1873, 2015.

[27] D. Gürsoy, T. Biçer et al., “Hyperspectral image reconstruction for x-ray
fluorescence tomography,” Optics Express, vol. 23, no. 7, pp. 9014–9023,
2015.

[28] ——, “Maximum a posteriori estimation of crystallographic phases in
x-ray diffraction tomography,” Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 373, no. 2043, p. 20140392, 2015.

[29] U. Stevanovic, M. Caselle et al., “A control system and streaming DAQ
platform with image-based trigger for x-ray imaging,” IEEE Transactions
on Nuclear Science, vol. 62, no. 3, pp. 911–918, June 2015.

[30] G. Teodoro, T. Kurc et al., “Comparative performance analysis of
Intel Xeon Phi, GPU, and CPU: A case study from microscopy image
analysis,” in IEEE 28th International Parallel and Distributed Processing
Symposium, May 2014, pp. 1063–1072.

[31] E. Serrano, G. Bermejo et al., “High-performance x-ray tomography
reconstruction algorithm based on heterogeneous accelerated computing
systems,” in 2014 IEEE International Conference on Cluster Computing
(CLUSTER), Sept 2014, pp. 331–338.

[32] F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction
algorithms on commodity PC graphics hardware,” IEEE Transactions
on Nuclear Science, vol. 52, no. 3, pp. 654–663, 2005.

[33] W. van Aarle, W. J. Palenstijn et al., “The ASTRA toolbox: A
platform for advanced algorithm development in electron tomography,”
Ultramicroscopy, vol. 157, pp. 35–47, 2015.

[34] C.-Y. Chou, Y.-Y. Chuo et al., “A fast forward projection using
multithreads for multirays on GPUs in medical image reconstruction,”
Medical Physics, vol. 38, no. 7, pp. 4052–4065, 2011.

[35] D. Lee, I. Dinov et al., “CUDA optimization strategies for compute-
and memory-bound neuroimaging algorithms,” Computer Methods and
Programs in Biomedicine, vol. 106, no. 3, pp. 175–187, 2012.

[36] M. Vogelgesang, S. Chilingaryan et al., “UFO: A scalable GPU-
based image processing framework for on-line monitoring,” in 14th
IEEE International Conference on High Performance Computing and
Communication, June 2012, pp. 824–829.

[37] NIST, “NIST Big Data Public Working Group (NBD-PWG) Home Page.
2013,” http://bigdatawg.nist.gov/home.php, 2014, Accessed: 2017-06-13.

[38] S. Kulkarni, N. Bhagat et al., “Twitter Heron: Stream processing at scale,”
in ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’15. New York, NY, USA: ACM, 2015, pp. 239–250.
[Online]. Available: http://doi.acm.org/10.1145/2723372.2742788

[39] T. Akidau, A. Balikov et al., “MillWheel: Fault-tolerant stream
processing at Internet scale,” Proc. VLDB Endow., vol. 6, no. 11, pp.
1033–1044, Aug. 2013. [Online]. Available: http://dx.doi.org/10.14778/
2536222.2536229

[40] M. Zaharia, T. Das et al., “Discretized streams: An efficient and fault-
tolerant model for stream processing on large clusters,” in 4th USENIX
Conference on Hot Topics in Cloud Ccomputing, ser. HotCloud’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=2342763.2342773

[41] M. Hirzel, H. Andrade et al., “IBM streams processing language: Ana-
lyzing big data in motion,” IBM Journal of Research and Development,
vol. 57, no. 3/4, pp. 7–1, 2013.

[42] H. S. Kuyuk, R. M. Allen et al., “Designing a network-based earthquake
early warning algorithm for California: ElarmS-2,” Bulletin of the
Seismological Society of America, vol. 104, no. 1, pp. 162–173, 2014.

[43] N. Nakata, J. P. Chang et al., “Body wave extraction and tomography
at long beach, california, with ambient-noise interferometry,” Journal
of Geophysical Research: Solid Earth, vol. 120, no. 2, pp. 1159–1173,
2015.

[44] T. Cowles, J. Delaney et al., “The Ocean Observatories Initiative:
Sustained ocean observing across a range of spatial scales,” Marine
Technology Society Journal, vol. 44, no. 6, pp. 54–64, 2010.

[45] D. E. Boyle, D. C. Yates et al., “Urban sensor data streams: London
2013,” IEEE Internet Computing, vol. 17, no. 6, pp. 12–20, 2013.

LICENSE

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the
Government. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public
Access Plan. http://energy.gov/downloads/doe-public-access-plan.

http://dx.doi.org/10.1107/S1600577516007980
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-siamCmt99.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-siamCmt99.pdf
http://doi.acm.org/10.1145/129888.129891
http://bigdatawg.nist.gov/home.php
http://doi.acm.org/10.1145/2723372.2742788
http://dx.doi.org/10.14778/2536222.2536229
http://dx.doi.org/10.14778/2536222.2536229
http://dl.acm.org/citation.cfm?id=2342763.2342773

