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New technological advancements in synchrotron light sources enable data

acquisitions at unprecedented levels. This emergent trend affects not only the

size of the generated data but also the need for larger computational resources.

Although beamline scientists and users have access to local computational

resources, these are typically limited and can result in extended execution times.

Applications that are based on iterative processing as in tomographic

reconstruction methods require high-performance compute clusters for timely

analysis of data. Here, time-sensitive analysis and processing of Advanced

Photon Source data on geographically distributed resources are focused on. Two

main challenges are considered: (i) modeling of the performance of tomographic

reconstruction workflows and (ii) transparent execution of these workflows on

distributed resources. For the former, three main stages are considered: (i) data

transfer between storage and computational resources, (i) wait/queue time of

reconstruction jobs at compute resources, and (iii) computation of reconstruc-

tion tasks. These performance models allow evaluation and estimation of the

execution time of any given iterative tomographic reconstruction workflow that

runs on geographically distributed resources. For the latter challenge, a

workflow management system is built, which can automate the execution of

workflows and minimize the user interaction with the underlying infrastructure.

The system utilizes Globus to perform secure and efficient data transfer

operations. The proposed models and the workflow management system are

evaluated by using three high-performance computing and two storage

resources, all of which are geographically distributed. Workflows were created

with different computational requirements using two compute-intensive

tomographic reconstruction algorithms. Experimental evaluation shows that

the proposed models and system can be used for selecting the optimum

resources, which in turn can provide up to 3.13� speedup (on experimented

resources). Moreover, the error rates of the models range between 2.1 and

23.3% (considering workflow execution times), where the accuracy of the model

estimations increases with higher computational demands in reconstruction

tasks.

1. Introduction

Advances in detector technologies enable increasingly

complex experiments and more rapid data acquisition at

synchrotron light sources (de Jonge et al., 2014). Current full-

field X-ray imaging instruments, including microtomography

and high-speed imaging, allow scientists to collect a full three-

dimensional (3D) or two-dimensional (2D) dataset at �1 mm

resolution in a fraction of a second (as short as 100 ps).

Moreover, the next-generation synchrotron light sources will

deliver several orders of magnitude higher temporal resolu-

tion in the nanometer range, extending in situ and time-
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dependent studies of phenomena to completely new regimes.

Similarly, other instruments based on scanning probe techni-

ques will directly benefit from technological advancements,

reducing data collection time by a factor of 100, which will

result in at least two orders of magnitude more data genera-

tion (APS, 2015).

Although data acquisition rates at X-ray light sources are

increasing rapidly, the analysis of these data often lags behind,

mostly because of the high computational demands of

processing and a lack of local compute resources and opti-

mized software tools. These factors significantly hinder the

ability to perform near-real-time analysis and visualization.

Because experimental setups and data acquisition approaches

at light sources are typically configuration-sensitive and

scientists need to make timely decisions in order to collect

accurate data, short turnaround times for data analysis are

crucial. Therefore, efficient and scalable software tools that

are tailored to the requirements of synchrotron light sources

will be a necessity, especially considering the increased data

acquisition rates that will be delivered by the new technolo-

gical advancements at light sources.

One of the widely desired compute-intensive applications

at synchrotron light sources is iterative tomographic image

reconstruction (Duke et al., 2015; Gürsoy et al., 2015a,b). This

application enables scientists to observe the internal structure

of objects from 3D images. The processing times of iterative

reconstruction applications are sensitive to the input dataset

size and configuration. Specifically, the number of iterations,

2D projections, sinograms and voxels determine the compu-

tational requirements of the reconstruction tasks. Recon-

struction of a typical high-resolution tomographic dataset can

take days with a well built workstation (Bicer et al., 2015).

In this work, we focus on understanding the performance

issues with iterative tomographic reconstruction workflows

and improving their end-to-end execution times on geogra-

phically distributed resources. In particular, our contributions

in this paper are as follows.

(i) We develop performance models for different stages in

tomographic reconstruction workflows.

(ii) We present a workflow management system that can

execute light source data analysis tasks on distributed

resources. Our system utilizes Globus for efficient and secure

management of workflows and data transfers (Foster, 2011;

Allen et al., 2012).

(iii) We evaluate and show our system’s accuracy and

performance using three high-performance computing (HPC)

and two storage resources. During our evaluations, we use two

real-world datasets and two iterative reconstruction algo-

rithms.

The remainder of this paper is organized as follows. In x2 we

introduce our performance models, which are used for esti-

mating the execution times of the workflows. In x3 we present

our workflow management system, in which the execution

of tomographic reconstruction workflows is automated on

geographically distributed resources. In x4 we evaluate the

performance models and workflow management system and

use real-world configurations on large-scale HPC resources to

assess the accuracy of our model estimations. In x5 we present

related work, and in x6 we summarize our conclusions.

2. Performance model

We model the performance of a tomographic reconstruction

workflow in three stages: (i) input and output data transfer

between storage and compute resources, data transfer; (ii)

submission of the reconstruction job to computational

resource and its wait/queue time; and (iii) reconstruction/

processing of projection data, computing. We assume that the

resources used for stages (i) and (iii) may be geographically

distant from each other.

2.1. Online estimation of data transfer rate

The tomography datasets are typically stored in local

storage resources after their acquisition. Although these

resources can provide some level of computational

throughput, they are generally limited. Therefore, the data

need to be transferred where sufficient computational

resources exist. This transfer process can introduce significant

overheads depending on the size of the dataset and the status

of the network.

Since the network is a shared resource, the available

bandwidth between resources changes dynamically. Therefore,

we model the data transfer rates in an online fashion. Speci-

fically, we measure the bandwidth from storage to compute

resources right before the execution of the workflow.

Our online bandwidth estimation method relies on the

bandwidth delay product (BDP) with transfer initialization

cost. BDP provides (theoretically) the maximum amount of

data that can be in transit before it is acknowledged by the

destination resource. It is the product of the theoretical

bandwidth between resources and the round-trip time of the

packets.

Fig. 1 depicts our online bandwidth estimation method.

Here, lines 1 and 2 calculate the sample dataset sizes, DS1 and

DS2, according to the BDP between resources A and B. Then,

the Generate function creates these files at resource A. In line

4, the generated sample datasets are transferred from A to B;
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Figure 1
Algorithm for online bandwidth estimation.



and, according to the transfer times t1 and t2, the transfer

initialization overhead is calculated. We calculate the current

bandwidth (without transfer initialization overhead) in line 6.

Using the estimated bandwidth and initialization cost, we then

derive the transfer time of the real dataset with size RD. Note

that DS1 and DS2 are typically much smaller than the original

dataset size, hence their transfer costs are minimal.

2.2. Queue time prediction

HPC clusters and supercomputers typically use a queue-

based batch scheduler to improve resource utilization and

provide fair share between users. These schedulers organize

user-submitted tasks/jobs and assign them to the available

resources. Depending on the submitted job’s resource

requirements and the number of jobs in the queue, a job can

wait minutes, hours or even days for resources. Therefore, the

queue time can significantly extend the end-to-end execution

time of a workflow.

We estimate the queue time of a computational resource

using a queue simulator. Specifically, first we take a snapshot

of the target cluster’s queue, Q. This snapshot includes

information about previously submitted jobs. Once this

information is acquired, we generate a synthetic job, j, that

represents the resource requirements of our reconstruction

task. This job then is enqueued into the Q. We simulate this

new Q with a queue simulator using one of the available

scheduling algorithms and observe j’s scheduling time.

Depending on the scheduling algorithm, simulated sche-

duling times can vary significantly. To accommodate the worst-

case scenario, we use conservative backfilling as our

default scheduling algorithm (Mu’alem & Feitelson, 2001).

Since we consider the worst-case scenario, we normalize the

estimated queue times with a ws constant. This constant can be

derived empirically by scheduling a test job at a target cluster.

Specifically, we simulated the current jobs in the target clus-

ter’s queue with a test job, which provides a simulation time t0.

At the same time, we submitted the same job to the target

cluster’s queue, which resulted in t1 scheduling time. The ratio

between t0 and t1 represents ws. Note that ws needs to be

calculated only once; therefore, its computation is negligible.

Although we set conservative backfilling as our

default scheduling algorithm, other algorithms can also be

used. For queue simulations, we used PYSS (Python Sche-

duling Simulator, 2007), a discrete-event simulator that

includes 18 different scheduling algorithms.

2.3. Modeling the performance of iterative reconstruction
algorithms

In general, a tomography dataset is a 3D array that consists

of 2D projections or images of an object. Each projection is a

set of line integrals associated with total attenuation of X-ray

beams while they pass through the object. During recon-

struction, each sinogram is mapped to a slice in a 3D image.

The computational complexity of this mapping function

depends mostly on the input sinogram size (i.e. number of

projections); size of the 3D image slice (or output slice);

number of iterations; and properties of the reconstruction

algorithm, such as communication and data access patterns.

An output slice is typically composed of a grid of size

col � col, where each grid cell represents a voxel. Here, col is

the width size (x dimension) of a projection. The reconstruc-

tion of a slice requires iterating over the X-ray attenuation

values in the sinogram, calculating backward and forward

projections, and updating the output voxels. The computa-

tional demand of the reconstruction depends on the number

of intersection points between X-ray and voxel grids. We can

estimate the number of intersection points that need to be

processed for a projection row as follows,

inters �ið Þ ¼ col2 sin �ið Þ
�� ��þ cos �ið Þ

�� ��� �
: ð1Þ

Here, �i denotes the rotation of the projection, and col2 is the

number of voxels in the output slice.

Although intersð�iÞ can quantify the computational

demands of a given projection row (with �i rotation), hard-

ware-specific information needs to be incorporated for more

precise estimations, especially if the goal is to estimate the

execution time. We capture hardware-specific information

by introducing a cost function, costð�iÞ, and a constant

parameter, td.

We use costð�iÞ to incorporate overheads due to the data

access pattern during reconstruction. For instance, if the

rotation of the projection is 0, that is, � = 0, then the recon-

struction algorithm operates on a continuous array of

elements (voxels that are in the same row). This type of

processing results in high cache utilization and therefore

minimum overhead. If the projection rotation is 90� (or �i =

90), however, then reconstruction performs strided accesses to

the voxels, which in turn introduce low cache utilization and

high overhead. We use equation (2) to capture the overhead

due to the data access pattern for a given rotation,

cost �ið Þ ¼ 1þ sin �ið Þ
�� ��� �k

: ð2Þ

In equation (2), the function sinð�Þ provides the cost trend for

the data access overhead, while constant k represents the

impact of the overhead. For instance, smaller cache sizes may

require larger k value.

Equations (1) and (2) can be used for computing the data

access overhead and computational load of reconstructing

a sinogram; however, the execution time estimation also

depends on the number of instructions that can be executed

per second by the running CPU. Therefore, we use the td

constant to capture the required time (in s) for processing

a single intersection point and its corresponding unit time

hardware overhead in a compute node.

Assuming that a tomography dataset is composed of ns

sinograms and that each sinogram (S) consists of projection

rows with �i, namely, S = f�1; �2; . . . ; �jSjg, then we can estimate

the reconstruction time of an input tomography dataset using

equation (3),

ns

PjSj

i¼ 1

intersð�iÞ costð�iÞ td: ð3Þ
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Note that we can derive all variables and functions in equa-

tions (1) and (2) from the input and output datasets. In other

words, these parameters and functions can be determined

before computation. However, the value of td requires

reconstruction of a sample sinogram (training data). Fortu-

nately, this process needs to be performed only once for the

target hardware (compute node) and typically takes negligible

time.

Since our performance model focuses on the computational

demand and processing time of a single intersection point, we

can estimate the reconstruction times even with large-scale

compute resources where a sinogram is being reconstructed

by more than one processing unit, such as multicore archi-

tectures.

3. Workflow optimization and system design

Execution of geographically distributed workflows requires

automation tools to ease synchronization and interaction with

resources. In this section, we present the components of our

system and discuss its execution.

3.1. System components

Our system consists of four main components: (i) data

transfer, (ii) metascheduler, (ii) performance models, and (iv)

workflow execution engine. The interactions between these

components are shown in Fig. 2 and explained in the following

subsections.

3.1.1. Data transfer. The data transfer component is

responsible for initiating data transfer requests during work-

flow execution. It also monitors the status of transfer and

triggers actions according to the state of the transmission. For

instance, if the data transfer is successful, this component

informs the workflow execution engine for the next stage.

Otherwise, it dispatches error messages for failure handling.

The metadata information about data transfers and

resources is defined in the resource configuration and metadata

file. This information includes the type and (end-point) address

of the resource, default input/output directories for the work-

flow management system, and the theoretically available

bandwidth. Here, a resource is a Globus end-point, and the

type of resource is either storage or compute. If the resource

type is compute, it can provide both computational and

storage resources, whereas storage resources can be used only

for storing data. Input/output directories are the default

folders that are being used by the workflow management

system. Typically, the input directory defines where input data

are stored (for both storage and compute resources), and the

output directory is where output data are stored after the

completion of data analysis at the compute resource. The

available bandwidth is used for estimating data transfer rates

(using x2.1).

This component also provides an interface for interacting

with Globus. The data transfer configuration parameters, such

as the number of parallel streams, concurrency and time-out

values, can also be set using this interface.

3.1.2. Metascheduler for multisite environments. Our

system utilizes geographically distributed resources to mini-

mize the end-to-end execution time. This process requires

interacting with various resources and depends on taking into

consideration operations such as resource allocations,

preparation and scheduling of jobs at the target system.

The metascheduler component creates an abstraction

between the resource managers of the compute clusters and

the workflow execution engine. Therefore, jobs can be defined

in the workflow execution engine (job description) and

materialized to real job requests (scripts) in the metasche-

duler. During execution, these scripts are transferred to the

target compute cluster and submitted to its job queue. A job

description consists of the job’s resource requirements, such as

the number of requested processors and allocation time. This

information is used for generating a suitable job script for the

target computer’s resource manager, for example, slurm or

torque.

Similar to the data transfer component, information

required for job submission is specified in the resource

configuration and metadata file. The information includes the

type of resource manager and the project name in which the

allocation request is going to be charged. Information about

the number of nodes, processors and scheduling algorithm of

the target resource is also stored in the resource configuration

file so that the performance and queue time estimation can be

computed.

3.1.3. Performance models and estimations. Our workflow

management system uses the models and simulation techni-

ques in x2 to quantify the performance of the resources.

Further, it helps in estimating the execution times of different

stages. This information can be used for selecting the most

efficient resources and minimizing the end-to-end execution

time of workflows.

As mentioned earlier, we consider three main stages during

the execution of a workflow: data transfer, computation and

queue/wait times. The performance models component eval-

uates these stages according to a given set of resources and

user-provided models. Specifically, for the data transfer stage,

this component first prepares scripts that generate sample

datasets on the target resource. It next initiates the transfer of

these sample datasets between resources (using Globus). It

then collects the required performance information and

parameters and calculates the estimated data transfer time by

using a performance model. The computation stage requires
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Components of the workflow execution engine.



using input data size information (i.e.

projection data), the td value of target

compute clusters, number of nodes/

processes, and application-specific

information such as the number of

iterations. This information is then used

for setting the parameters in the

computational model, and execution

times for different compute resources

are estimated. For the queue/wait time

stage, the system first collects the

current states of the queues in the target

compute clusters. This state information

includes all jobs that are currently

running or waiting in the clusters’

queues. The performance models

component simulates each of these

queues with the user-specified recon-

struction job and estimates the queue

times.

Note that the performance models

component extensively uses Globus and

the resource configuration file for esti-

mations. It also provides an interface in

which different light source application

models can easily be integrated.

Our system can be used for execution

and modeling of large workflows that

execute on many geographically

distributed resources.

3.1.4. Workflow execution engine.

The workflow execution engine is the intermediate layer that

orchestrates the other components. Users of the workflow

management system interact with this layer to initiate work-

flow executions and performance estimations.

3.2. Execution of workflow management system

Fig. 3 shows the execution flow of our system, which consists

of two main processes (daemons) that manage the execution

of workflows: master daemon ðMDÞ and worker daemon ðWDÞ.

The user interacts with the MD process and initiates the

workflow execution. MD is responsible for running the

previously defined components, namely the data transfer,

metascheduler, performance models and workflow execution

engine.

Our workflow management system can interact with any

end-point that is enabled in Globus. In Fig. 3, we show four

different end-points: two are compute end-points, one is a

cloud end-point, and one is a storage end-point. Since storage

resources can be managed easily with Globus, WD is executed

on compute resources only.

Fig. 3 illustrates a sample workflow scenario. Initially, the

user interacts with MD and (1) initiates the workflow execution.

MD then establishes a connection with Globus and (2) starts

transferring data (which need to be processed) from the

storage to the compute end-point. While data are being

transferred, MD (3) creates command scripts and initiates

another transfer request from MD to the compute resource.

After the transmission, WD starts executing the retrieved

scripts. The scripts consist of different bash commands, such as

job submission, sample data generation (for data transfer

estimations) or queue status commands (for queue time esti-

mation). In our workflow example, the transferred script has

job submission commands; hence WD enqueues the job to the

cluster’s queue. This job is then executed by the cluster’s

resource manager. Recall that the metascheduler component

creates job submission commands depending on the target

cluster’s environment. Therefore the scripts can transparently

be generated by MD. Once WD finishes executing all the

commands in the script, it informs MD with a status file. MD then

initiates another data transfer that (4) sends the processed

data from the compute to the data end-point.

4. Experimental results

In this section, we present the experimental evaluation of our

performance models and workflow management system. In

particular, we compare and analyze the estimated and real end-

to-end execution times of tomographic reconstruction work-

flows that run on geographically distributed resources.
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Figure 3
Execution of the workflow management system. Each rectangle (and the cloud) represents a
geographically distant location. Steps (1)–(4) illustrate a sample workflow, in which (1) the user
initiates an iterative tomographic reconstruction workflow; (2) projection dataset, input, is
transferred from Storage Endpoint0 to Comp. Endpoint0; (3) system generated resource allocation
script is transferred and submitted to Comp. Endpoint0 for reconstruction; (4) reconstructed image,
output, is transferred to Cloud Endpoint0 for visualization and storage.



4.1. Experimental setup

In our experiments, we used three compute clusters, Mira,

Stampede and Gordon, for data processing. Table 1

summarizes the technical details of the compute clusters.

We also used two storage resources, Chameleon (https://

chameleoncloud.org) and Petrel (http://petrel.alcf.anl.gov), for

data storage. Petrel is located at Argonne National Labora-

tory and can provide up to 1.7 PB of storage space. Chameleon

is a cloud resource located at the Texas Advanced Computing

Center (TACC) and has 1.5 PB of storage space.

We evaluated our computation models using two iterative

tomographic reconstruction algorithms: simultaneous iterative

reconstruction technique (SIRT) and accelerated penalized

maximum likelihood (APMLR). APMLR is computationally

more demanding than SIRT because it incorporates infor-

mation of neighboring voxels during reconstruction. For data

transfer operations and estimations, we used Globus. During

the data transfer estimations, we set the sample data size

replication to 16 (c = 16) and the initialization overhead

multiplier to 2 (m = 2). For job queue simulations, we used the

conservative backfilling algorithm and set its weight in

the performance models to 0.04. Finally, the k constant in the

costð�Þ function is set to 1.

We used two real-world datasets, ‘Seed’ and ‘Hornby’,

collected from Advanced Photon Source (APS) beamlines.

The Seed dataset was acquired from a seed of Arabidopsis

thaliana, a flowering plant (Gürsoy et al.,

2015b); it consists of 720 projections,

512 sinograms and 501 columns (i.e. 720

� 2048 � 501 single-precision floating-

point numbers). Hornby is X-ray

microtomography data from a shale

sample (Kanitpanyacharoen et al.,

2013); it includes 360 projections, 2048

sinograms and 1024 columns. During

our experiments, we varied the number

of projections and sinograms of the

datasets in order to introduce varying

computational demands for reconstruc-

tion.

We assumed that a workflow consists

of four stages: (1) transferring the

projections dataset (input) from storage

to the compute resource; (2) submitting

the reconstruction job to the queue and

wait; (3) reconstructing the tomographic

dataset; and (4) transferring the 3D

image (output) from the compute

resource to storage. During our experi-

ments, we categorized these stages as

data transfer, queue and computation.

4.2. Evaluation of performance models
on geographically distributed resources

First, we evaluated the estimated and

real execution times of the Seed and

Hornby datasets using the SIRT reconstruction algorithm.

During our evaluation, we varied the experimental config-

urations and created workflows with different performance

characteristics.

Fig. 4 shows the experimental results for the Hornby

dataset. For all experiments, ‘Real’ refers to the actual end-to-

end execution times of the workflows, whereas ‘Estimated’

refers to the estimated execution times after running the

performance models. Different dataset sizes were used in

order to introduce varying computational demands; therefore,

the accuracy of the performance model estimations can be

observed. Specifically, we generated several versions of the

Hornby dataset and set their dimensions to P� 128� 2048, in

which P refers to the number of projections in the tomo-
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Table 1
Specifications of experimented compute clusters (PFLOPS: peta floating-
point operations per second; TFLOPS: tera floating-point operations per
seconds).

Cluster
Peak
performance

Number
of nodes

Number
of cores Memory

Mira† 10 PFLOPS 49125 786432 768 TiB
Stampede‡ 9.6 PFLOPS 6400 522080 270 TiB
Gordon§ 341 TFLOPS 1024 16384 64 TiB

† Located at ANL: http://www.alcf.anl.gov/mira. ‡ Located at TACC: https://www.tacc.
utexas.edu/stampede. § Located at SDSC: http://www.sdsc.edu/services/hpc.

Figure 4
Real and estimated execution times (in s) of Hornby image reconstruction workflow using
geographically distributed compute and storage resources.



graphic dataset. We also used different configurations for the

storage and compute resources, so that varying data transfer

and computational costs were introduced. In particular, each

workflow, W, was configured as S0–C–S1, where C refers to

compute resource and S0 and S1 are source and destination

storage resources, respectively. Since C = {Gordon, Mira,

Stampede} in each experiment, we present C by � in Figs. 4(a)–

4(d). For instance, in Fig. 4(d), the Hornby dataset’s dimen-

sions are 180 � 128 � 2048 (P = 180), and the dataset is

initially stored on Chameleon. For each workflow in Fig. 4(d),

first the dataset is transferred from Chameleon to one of the

computational resources (C). Then, its reconstruction job is

submitted to the compute cluster’s queue. After the recon-

struction, the output dataset (3D image) is transferred to

Petrel. For this set of experiments, we used 128, 32 and 32

compute nodes for Mira, Stampede and Gordon, respectively.

Considering the estimated and real execution times in Fig. 4,

we see that the error rates range from 1% to 18.2%, with an

average of 9.8%. The highest error rate is observed in the P =

180 and C = Stampede configuration. As mentioned before, we

consider (and model) three phases in a workflow: data

transfer, queue and computation. Among these, our compu-

tational model provides the most accurate estimation, mainly

because of the explicit allocation of compute nodes. On the

other hand, the data transfer and job queue are shared

between users, thus introducing noise and performance fluc-

tuations depending on the utilization of

the network and compute resources.

Because smaller datasets require less

computation, errors in data transfer and

queue time estimations become more

visible in the overall estimation. Speci-

fically, for the P = 180 and C = Stampede

configuration, the real and estimated

computation times are 137 s and 136 s,

respectively. However, the total real

time for the queue and data transfer is

197 s, whereas the total estimated time

is 258 s.

Among the compute resources,

Stampede provides the highest compu-

tational throughput per node. When we

analyze the execution times in Fig. 4,

however, we see that in many cases

configurations with Stampede perform

poorly. The main reasons are the longer

job queues and data transfer times at

Stampede. Note that our performance

models can provide estimations that can

help in selecting the most efficient

workflow configurations. If we compare

the real execution times in each figure,

the speedups in selecting the best

configuration versus the worst range

between 1.41 and 1.95, which indicate

that our models can have a significant

effect on the end-to-end execution time.

In Fig. 5 we repeat the previous experiments with the Seed

dataset. The dimensions of the Seed dataset are P � 512 �

501. Since this dataset is smaller than Hornby’s, its computa-

tional demands are lower. Therefore, we observe larger error

rates. Specifically, considering the real and estimated times, we

see that the average error rate is 9.5%, where the rates range

between 1% and 23.3%. The largest error rate is observed

with the P = 90 and C = Stampede configuration, in which the

error rate of the computation time is 6.2% and that of the

queue and data transfer is 28.1%. Most of the remaining

configurations’ error rates are lower than 14.5%.

Similar to the Hornby experiments, if we compare the

estimated and real execution times we see that our models can

help select the best configuration that can provide the shortest

end-to-end execution time. Considering the configurations

with the best and worst execution times, the speedups of

selecting the right configuration range between 1.89 and 3.13.

Next, in Fig. 6, we focus on the workflow execution times of

the Hornby dataset, considering different phases and varying

the number of compute nodes. The dimensions of the dataset

are configured to 180 � 2048 � 2048; that is, all the sinograms

of Hornby are reconstructed. The computations are

performed on Stampede, and both the source and target

storage resources are set to Chameleon.

Fig. 6(a) shows the total execution times. The error rates

of the estimated execution times range from 3% to 14.4%.
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Figure 5
Real and estimated execution times (in s) of Seed image reconstruction workflow using
geographically distributed compute and storage resources.



Similar to the previous set of experiments, the estimated times

successfully reflect the real execution times. If we focus on the

computation times, we observe almost linear scalability;

however, the data transfer and queue times do not follow the

same trend, which can also be seen in Fig. 6(b). For instance,

while the queue time of the 32-node configuration takes 25.3%

of the execution time, the queue times of the N = 128 and N =

256 configurations are negligible.

If we analyze the data transfer times, we observe similar

results for all the workflows. Because the output dataset size is

the same for all configurations, the data transfer takes similar

times. Specifically, the data transfer times range from 374 s to

404 s for the real configurations and 431 s to 560 s for the

estimated configurations. Because Stampede and Chameleon

are located at the same site (TACC), the data transfer is more

isolated, and the network can provide better performance.

5. Related work

In recent years, data analysis problems and workflows at

synchrotron light sources have gained immense popularity,

primarily because of the technological advances in scientific

instruments and unprecedented data generation rates at

beamlines.

Several activities focus on data management and analysis of

light sources (Bashamet al., 2015; Hong et al., 2015; Patton et

al., 2015). CAMERA is an interdisciplinary project at LBNL

(Donatelliet al., 2015). The main goal of the CAMERA project

is to investigate problems of DOE user facilities, including

synchrotron light sources, and develop fundamental new

mathematical solutions. Similarly, the Computational Science

Initiative at Brookhaven National Laboratory provides

workflow systems to define data-processing tasks for NSLS-II

facility users (Computational Science Initiative, 2015).

PaNdata is another joint effort that focuses on creating fully

integrated information infrastructure for the X-ray and

neutron facilities at Europe (Bicarreguiet al., 2015).

Tomography is a widely used imaging

technique at synchrotron light sources

(Gürsoy et al., 2015a,b; Mohan et al.,

2015; Qi & Leahy, 2006; Duke et al.,

2015; Chen et al., 2012; Pelt et al., 2016).

Iterative tomographic reconstruction

typically provides higher-quality images

than the filtered-back projection

method does, because of the better

reduction in noise and in missing wedge

artifacts. However, iterative approaches

typically require more computational

throughput (Sidky et al., 2006; Agulleiro

& Fernandez, 2011; Treibig et al., 2013;

Beister et al., 2012). Accelerators, such

as GPUs, have been used to improve

performance of iterative algorithms

(Chilingaryan et al., 2010; Mirone et al.,

2014; Brun et al., 2015; Vogelgesang et

al., 2012), but memory limitations of these accelerators can

introduce significant overheads due to the data movement

from host to device memory. The TomoPy framework provides

a complete set of tools for the portable analysis of tomography

datasets, which can run on workstations (Gürsoy et al., 2014).

Our workflow management system uses highly parallel

versions of TomoPy’s reconstruction algorithms to decrease

the execution time of reconstruction tasks from days to

minutes on high-performance resources (Bicer et al., 2015).

Both tools use data exchange models for organization and

portability of tomography data (De Carlo et al., 2014).

Scientific workflows have been extensively researched by

different communities (Frey et al., 2001; Goecks et al., 2010;

Wolstencroft et al., 2013; Taylor et al., 2007). The Pegasus

workflow management system maps abstract workflow

descriptions to geographically distributed execution environ-

ments (Deelman et al., 2015). In this work, we analyze and

integrate performance models for light source data analysis

workflows. SPOT is another system that focuses on end-to-end

analysis of light source data (Deslippe et al., 2014). SPOT

enables the execution Advanced Light Source workflows on

NERSC’s resources. In contrast, our work uses Globus for

data management and workflow execution, and therefore it

can utilize every end-point that is accessible by the user.

6. Conclusion

In this paper, we focused on performance modeling and

transparent execution of a synchrotron light source applica-

tion. The proposed models help to quantify the data transfer

and computation performance while considering the queue/

wait time of high-performance computing resources. Our

models are tailored to iterative tomographic image recon-

struction, in which large computational throughput is desired

for timely execution. We implemented these models in a

workflow management system that minimizes the user inter-

action while executing reconstruction tasks on geographically

research papers

8 of 9 Tekin Bicer et al. � Optimization of tomographic reconstruction workflows J. Synchrotron Rad. (2016). 23

Figure 6
(a) Comparison of real and estimated execution times (in s) considering different phases for the
Hornby dataset with varying number of compute nodes at Stampede. The reconstruction algorithm
is APMLR. The dimensions of the dataset are 180� 2048� 2048. Workflow of the reconstruction is
configured as W: Chameleon–Stampede–Chameleon. (b) Distribution (%) of phases with respect to
total execution time grouped in real and estimated configurations.



distributed resources. We evaluated our models and system

using two tomography datasets (from APS beamlines) and two

compute-intensive tomographic reconstruction algorithms.

Moreover, we used three HPC and two storage resources, all

of which are distributed. Our experimental results show that

the correct resource selection can provide up to 3.13�

speedup. Moreover, the error rates of the models range

between 2.1 and 23.3% (considering workflow execution

times), where the accuracy of the estimations improves with

higher computational demands in reconstruction tasks.
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