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ABSTRACT
Recent years have witnessed an increasing performance gap be-
tween I/O and compute capabilities. In-situ analytics, which can
avoid expensive data movement of simulation output data by co-
locating both simulation and analytics programs, has lately been
shown to be an effective approach to reduce both I/O and stor-
age costs. Developing an efficientin-situ implementation involves
many challenges, including parallelizing the analysis, performing
required data movement or sharing, and allocating appropriate re-
sources for the execution of the analytics program(s). MapReduce
has been a widely adopted programming model for parallelizing da-
ta analytics. However, despite the popularity of MapReduce, there
are several obstacles to applying its API and implementing it for
in-situ scientific analytics.

In this paper, we present a novel MapReduce-like framework which
supports efficient in-situ scientific analytics. Our systemis referred
to as in-Situ MApReduce liTe (Smart). Smart can load simulated
data directly from memory in each node of a cluster. It leverages
a MapReduce-like API to parallelize the analytics, while meeting
the strict memory constraints on the analytics code when it is co-
located with simulation. Using Smart for in-situ analyticsrequires
only minimal changes to the simulation program itself. Smart can
be launched from parallel (OpenMP and/or MPI) code region once
each simulation output partition is ready, while the globalanalytic-
s result can be directly obtained after the parallel code converges.
We have developed both time sharing and space sharing modes for
maximizing the performance in different scenarios. Moreover, S-
mart also incorporates an optimization for efficient in-situ window-
based analytics.

Performance comparison with Spark shows that our system can

achieve high efficiency in in-situ analytics, by outperforming S-
park by at least an order of magnitude. We also show that our
middleware does not add much overhead (typically less than 10%)
compared with handcrafted analytics programs. By using different
simulation and analytics programs on both multi-core and many-
core clusters, we have demonstrated both the functionalityand s-
calability of our system. We can achieve 93% parallel efficiency
on average. Next, we show the efficiency of both time sharing and
space sharing modes. Finally, we also show that our optimization
for in-situ window-based analytics can achieve a speedup ofup to
5.6.
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1. INTRODUCTION
A major challenge faced by data-driven discovery from scientif-
ic simulations [47, 54, 55] is a shift towards architectureswhere
memory and I/O capacities are not keeping pace with the increasing
computing power [27]. There are many reasons for this constrain-
t on HPC machines. Most critically, the need for providing high
performance in a cost and power effective fashion is drivingarchi-
tectures with two critical bottlenecks —memory boundanddata
movement costs[22]. Scientific simulations are being increasingly
executed on systems with coprocessors and accelerators, including
GPUs and the Intel MIC, which have a large number of cores but
only a small amount of memory per core. As power considerations
are driving both the design and operation of HPC machines, power
costs associated with data movement must be avoided.

In response to this unprecedented challenge,in-situ analytics[21,
23, 65, 73] has emerged as a promising data processing paradigm,
and is beginning to be adopted by the HPC community. This ap-
proach co-locates the upstream simulations with the downstream
analytics on same compute nodes, and hence it can launch analyt-
ics as soon as simulated data becomes available. Compared with
traditional scientific analytics that processes simulateddata offline,
in-situ analytics can avoid, either completely or to a very large ex-
tent, the expensive data movement of massive simulation output
to persistent storage. This translates to saving in execution times,
power, and storage costs.



1.1 Motivation
The current in-situ analytics research can be very broadly classi-
fied into two areas: 1) in-situ algorithms at theapplication lev-
el, including indexing [20, 23], compression [24, 74], visualiza-
tion [19, 62, 72], and other analytics [25, 50, 67]; and 2) in-situ
resource scheduling platforms at thesystem level, which aim to
enhance resource utilization and simplify the management of co-
located analytics code [4,6,11,35,50,70]. These in-situ middleware
systems mainly play the role of acoordinator, aiming to facilitate
the underlying scheduling tasks, such as cycle stealing [70] and
asynchronous I/O [50].

Despite a large volume of recent work in this area, an important
question remains almost completely unexplored: “can the applica-
tions be mapped more easily to the platforms for in-situ analytics?”.
In other words, we posit thatprogramming modelresearch onin-
situanalytics is needed. Particularly, in-situ algorithms arecurrent-
ly implemented with low-level parallel programming libraries such
as MPI, OpenMP, and Pthread, which offer high performance but
require that programmers manually handle all the parallelization
complexities. Moreover, because similar analytics may be applied
in both in-situ and offline modes, another interesting question is
“can the offline and in-situ analytics codes be (almost) identical?” .
Clearly, this is likely only if the implementation is in a high-level
framework, where details like loading and staging data and com-
plexity of parallelization are hidden from the applicationdeveloper.

1.2 Our Contributions
In this paper, we describe a novel MapReduce-like frameworkfor
in-situ scientific analytics. To the best of our knowledge, this frame-
work is the first work to exploit a high-level MapReduce-likeAPI
in in-situ scientific analytics. The system is referred to asin-Situ
MApReduce liTe (Smart). Our system can support a variety of
scientific analytics on simulation nodes, with minimal modifica-
tion of simulation code and without any specialized deployment
(such as installing HDFS). Compared with traditional MapReduce
frameworks, Smart supports efficient in-situ processing byaccess-
ing simulated data directly from memory in each node of a cluster
or a distributed memory parallel machine. Moreover, unlikethe
traditional implementations, we base our work on a variant of the
MapReduce API, which avoids outputtingkey-valuepairs and thus
keeps the memory consumption of analytics programs low. To ad-
dress the mismatch between parallel programming view of simula-
tion code and sequential programming view of MapReduce, Smart
can be launched from parallel (OpenMP and/or MPI) code region
once each simulation output partition is ready, while the global an-
alytics result can be directly obtained after the parallel code con-
verges. Further, we have developed bothtime sharingandspace
sharing modes for maximizing the performance in different sce-
narios. Additionally, for memory-intensive window-basedanalyt-
ics, we improve the in-situ efficiency by supporting early emission
of reduction object.

We have extensively evaluated both the functionality and efficiency
of our system, by using different scientific simulations andana-
lytics tasks on both multi-core and many-core clusters. We first
show that our system can outperform Spark [64] by at least an or-
der of magnitude for three applications. Second, we show that our
middleware does not add much overhead (typically less than 10%)
compared with analytics programs written with low-level program-
ming libraries (i.e., MPI and OpenMP). Next, by varying the num-
ber of nodes and threads, we demonstrate high scalability ofour
system. Moreover, by comparing with another implementation of

our system that involves an extra copy of simulated data, we show
the efficiency of our design (for time sharing mode). Further, we
also evaluate how our space sharing mode is suitable for clusters
with many-core nodes. Finally, we show our optimization forin-
situ window-based analytics can achieve a speedup of up to 5.6, by
comparing it with an implementation that disables early emission
of the reduction object.

2. BACKGROUND AND CHALLENGES
In this section, we first provide background information on in-situ
scientific analytics and MapReduce, then argue why the MapRe-
duce API is suitable for in-situ analytics, and finally focuson the
challenges in applying the MapReduce idea for efficient in-situ sci-
entific analytics.

2.1 Background: In-Situ Scientific Analytics
and MapReduce

As the performance gap between I/O and compute capabilitieshas
been increasing unprecedentedly,in-situ data processing has been
widely used in a variety of scientific analytics [20,24,25,50,62,72,
74]. This emerging data processing paradigm can avoid expensive
data movement of simulation output by co-locating both simula-
tion and analytics programs, leading to a significant reduction in
both I/O and storage costs. As a case study, we compare the perfor-
mance of in-situ analytics, against the traditional offlineanalytics
which runs in a store-first-analyze-after manner – first outputs sim-
ulated data to disk and then loads the data into analytics programs.
We used a real-life simulation program Heat3D [2], as well ask-
means clustering as the analytics program, to process 1 TB data
on 64 cores in time sharing mode. To vary the amount of computa-
tion, we used different number of iterations (before convergence) in
the k-means algorithm. Figure 1 shows the total processing times
including both simulation and analytics time, as well as theI/O
overheads involved by offline analytics. It turns out that even with
a moderate amount of computation, in-situ analytics can still out-
perform offline analytics by up to 10.4x.
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Figure 1: A Case Study: Performance Comparison Between In-Situ
and Offline K-Means Clustering

Despite the performance gain compared with traditional offline an-
alytics, to minimize the impact on simulation performance,in-situ
analytics requires that some strict resource constraints be met. Par-
ticularly, since co-located simulation and analytics share the same
memory resource, and simulations are often memory-bound, it is
very desirable that the in-situ analytics program operateswith only
a small amount of memory.

On the other hand, MapReduce [9] was proposed by Google for
scalable application development for data-centers. With asimple
interface of two functions,mapandreduce, this model has a great



suitability for the parallel implementations of a variety of applica-
tions, including large-scale scientific analytics [7,29,32,40,49,51,
59, 68]. Themap function takes a set of input instances and gen-
erates a set of corresponding intermediate output(key, value)pairs.
The MapReduce library groups together all of the intermediate val-
ues associated with the same key and shuffles them to thereduce
function. Thereducefunction, also written by the users, accepts a
key and a set of values associated with that key. It merges together
these values to form a possibly smaller set of values.

2.2 Opportunity and Feasibility
MapReduce [9] has been one of most widely adopted programming
model for developing data analytics implementations – though it is
perhaps not as widely accepted for science areas as it is for com-
mercial areas. MapReduce API not only simplifies parallelization,
but the framework implementation handles much of scheduling,
task management, and data movement. However, none of its cur-
rent implementations is directly suitable for in-situ scientific ana-
lytics.

We posit that MapReduce API is indeed suitable for a large set
of analytics tasks one might perform in-situ on a scientific simu-
lation. Now we give some specific use cases of in-situ analytic-
s reported in various studies, and how these cases can potentially
fit the MapReduce paradigm: 1) visualization algorithms [19, 62],
where most steps are embarrassingly parallel and others involve re-
ductions; 2) statistical analytics [72] and similarity analytics [44]
where statistics like averages, histogram, and mutual information
need to be calculated – steps that are very well suited for MapRe-
duce [7], or even higher-level frameworks built on top of MapRe-
duce, e.g., Pig [36] and Hive [48]; and 3) feature analytics [25] and
clustering analytics [67], which have been efficiently implemented
in MapReduce (though in an offline fashion), e.g., logistic regres-
sion and k-means clustering through Spark [64].

Besides the match between the target applications and the choice
of programming model, another important issue tends to be that of
programmer’s expertise. In this respect, we argue that as MapRe-
duce has been gaining great popularity in recent years, manysci-
entists are now well-trained for writing MapReduce-style code for
scientific analytics [7, 29, 32, 40, 49, 51, 59, 68]. Therefore, an in-
situ MapReduce-like framework can be a promising approach to
improve both productivity and maintainability of scientific analyt-
ics.

2.3 Challenges
We next discuss the the challenges of bridging the gap between in-
situ scientific analytics and MapReduce, which we summarizeas
four mismatches.

2.3.1 Data Loading Mismatch
As the name ‘in-situ’ implies, the downstream analytics program is
required to take the input directly from (distributed) memory rather
than from a file system, as soon as the simulated data becomes
available. However, existing MapReduce implementations are not
designed for such a scenario. To further elaborate on this data load-
ing mismatch, we first categorize all the MapReduce implementa-
tions into four types according to the data loading mechanism.

1. Loading Data from Distributed File Systems: A prominent
example is Hadoop, as well as its variants like M3R [43] and
SciHadoop [7], which load data from Hadoop Distributed File

System (HDFS). Moreover, Hadoop actually mimics Google’s
MapReduce [9], which loads data from the Google File System
(GFS). Additionally, Disco [1], a MapReduce implementation in
Erlang, loads data from Disco Distributed File System (DDFS).

2. Loading Data from Shared and/or Local File Systems: Sys-
tems like MARIANE [14] and CGL-MapReduce [13] have adapt-
ed MapReduce to scientific analytics environment by loadingda-
ta from a shared file system. Moreover, other MPI-based imple-
mentations like MapReduce-MPI [37] and MRO-MPI [34] can
load data from shared file system and/or local disk.

3. Loading Data from Memory : Pthread-based MapReduce pro-
totypes like Phoenix [38], Phoenix++ [46], and MATE [18], can
load data from memory. However, these prototypes are restricted
to shared-memory environment, and hence currently they arenot
available for distributed computing.

4. Loading Data from a Data Stream: Though MapReduce was
originally designed for batch processing, systems like HOP[8],
M3 [5], and iMR [30] have focused on stream processing.

Clearly, the first two categories, where data is loaded from file sys-
tems cannot support in-situ analytics. Similarly, the third class
lacks native support for global synchronization required in a dis-
tributed environment. The fourth group seems more suitable, as
one might consider the possibility of wrapping simulation output as
a data stream. However, this approach still imposes severalobsta-
cles. First, as data is simulated in the form of potentially large time-
steps, it is simply unnatural to cast time-steps into a data stream.
Such casting often not only requires nontrivial extra overhead, but
also results in periodical stream spiking that can severelydegrade
the performance of stream processing, due to the sudden arrival
of large volumes of simulated data. Second, since only a single
pass can be allowed over data stream, such casting also losesthe
capability of iterative processing, which can be required by many
analytics programs, e.g., regression and clustering.

However, among all the MapReduce implementations we have ex-
amined, we find Spark [64] as an exception here. Its input datalay-
out is defined as Resilient Distributed Dataset (RDD) [63], which
can be derived from all the above data source options. Howev-
er, Spark still has functionality and performance limitations, which
will be demonstrated through a series of experiments we report in
Section 5.

2.3.2 Programming View Mismatch
A critical gap between scientific simulation and MapReduce is caused
by different programming views. On one hand, simulations are usu-
ally implemented in MPI (or a PGAS language) that is suitablefor
distributed memory environments (possibly in conjunctionwith a
shared memory API like OpenMP/OpenCL). With these low-level
parallel programming libraries, the programmers explicitly express
parallelism in aparallel programming view, i.e., all the paralleliza-
tion details like data partitioning, message passing, and synchro-
nization, must be manually handled. On the other hand, the sim-
plified interface of MapReduce presents asequential programming
view, which hides all the parallelization complexities. In sucha
sequential programming view, all parallelization detailsare trans-
parent to the programmers. Thus, traditional MapReduce imple-
mentations cannot explicitly take partitioned simulationoutput as
the input, or launch the execution of analytics from an SPMD re-
gion. Without any change at the downstream MapReduce side, this
mismatch cannot be addressed in a realistic way.



For example, one might consider rewriting all the simulation code
based on MapReduce. This option is clearly impractical due to four
obstacles. First, scientists not only spend many years on writing,
debugging, and tuning existing simulation programs, but those pro-
grams also have long lifetimes. Second, simulation programs are
mostly written in Fortran or C/C++, and translating them into a pro-
gramming language like Java or Scala that is used by MapReduce
will likely result in a large performance loss. Third, almost all sim-
ulation programs require point-to-point data exchange between dif-
ferent partitions, a pattern that does not match MapReduce.Lastly,
simulation programs manipulate array slabs and need to be aware
of element positional information, whereas conventional MapRe-
duce is designed to process lines of record and does not preserve
any record positional information. Yet another possibility might be
to gather all partitioned simulated data on a single computenode
and feed it to MapReduce. This option is also clearly prohibitively
expensive.

An elegant option will be to develop a new MapReduce implemen-
tation, which can present ahybrid programming view. Particularly,
at the beginning, a parallel programming view should be presented,
to allow the programmers to be aware of all the partitions during the
parallel execution. After the partitioned data are input, asequential
programming view should follow, so parallelism details arehidden.

2.3.3 Memory Constraint Mismatch
As simulation programs normally execute with problem sizesthat
require all or almost all available main memory on each node,the
in-situ analytics program can only take a very small amount of
memory. However, nearly all existing MapReduce implementa-
tions are memory-intensive, and most are even disk-intensive. This
is primarily because in the mapping phase, each element results in
intermediate data in the form of one or more key-value pairs,which
can have an even greater size than the original input data. More-
over, the subsequent operations like sorting, shuffling, and group-
ing only reorganize intermediate data, while not reducing its size.
Thus, the memory consumption cannot be decreased until the ac-
tual reduce operation is executed. Note that although a combiner
function at the mapper side can significantly reduce the sizeof in-
termediate data in the shuffling phase, it will not help reduce the
peak memory consumption in the mapping phase. The memory
constraint mismatch cannot be addressed unless we redesignthe
MapReduce execution flow – particularly, we need to avoid thein-
termediate key-value pairs.

2.3.4 Programming Language Mismatch
The last mismatch is from the programming languages that areused
to implement simulation and analytics programs with MapReduce.
On one hand, almost all the HPC simulations in use are writtenin
Fortran or C/C++, and it is impractical to rewrite simulation code
in other programming languages like Java or Scala. On the other
hand, both Hadoop and Spark, which are the most widely adopt-
ed MapReduce implementations (though Spark also provides other
functionality), cannot natively support Fortran or C/C++.Although
this mismatch can be alleviated by using alternate C/C++ based
MapReduce implementations [14,34,37,38], these systems are not
widely adopted.

3. SYSTEM DESIGN
In this section, we discuss the design and implementation ofour
system. Overall, Smart design addresses all the challengeswe de-
scribed in the last section, specifically: 1) to address the data load-

ing mismatch, Smart supports processing data from memory gen-
erated by the simulation program – and in one of the in-situ modes
(time sharing), does so without requiring an extra data copy; 2)
to address the programming view mismatch, Smart offers ahybrid
programming view– this exposes the data partitions to the analyt-
ics while launching the data processing, and can still hide paral-
lelism during the execution; 3) to address the memory constraint
mismatch, Smart achieves high memory efficiency by modifying
the original MapReduce API (while still keeping programming ef-
fort very low), and more specifically, avoids the large number of
key value pairs or the need for shuffling; and 4) to address thepro-
gramming language mismatch, Smart is implemented in C++11,in
conjunction with OpenMP and MPI.

3.1 System Overview
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Figure 2: System Overview of Smart

Figure 2 gives an overview of the execution flow of a typical ap-
plication using Smart in a distributed environment. First,given a
simulation program, each compute node generates a data partition
at each time-step. Instead of the data being output to the disk, the
memory resident data partitions are immediately taken as the input
by the downstream Smart analytics job(s). Since the data partitions
are generated from the SPMD region of the simulation program,
the Smart jobs are also launched from the same code region. Un-
like most distributed data processing systems, Smart can directly
expose these partitions to the subsequent processing, rather than
involve any explicit data partitioning among the compute nodes.

Next, the Smart runtime scheduler processes partitioned data block
by block. For each data block, the Smart runtime scheduler equal-
ly divides it into multiplesplits, where each split is assigned to a
thread for processing. Additionally, Smart binds each thread to a
specific CPU core to maximize the performance.

In processing elements within a split, there are two key operations,
reductionandcombination, which are carried out on two core map
structures,reduction mapandcombination map, respectively. To
support these operations, the programmers need to define areduc-
tion object, which represents the data structure of value in the key-
value pairs of the two maps. This data structure maintains the ac-
cumulated (or reduced) value across all key-value pairs that have
the same key. In the reduction operation, a key is first generat-
ed for each element in the split. With this key, the runtime next
locates a reduction object in the reduction map, and then thecor-
responding element is accumulated on this reduction object. In the
combination process, all the reduction maps are combined into a
single combination map locally, and then all the combination maps
on each node are further merged on the master node.



Finally, as the parallel code converges, the final output canbe re-
trieved in sequential code region. Thus, a sequential programming
view is presented to the user. Alternatively in many cases where
the in-situ analytics tasks are deployed as a MapReduce pipeline,
some preprocessing steps like smoothing, filtering, and reorganiza-
tion, only have a local output on each partition. For this case, by
turning off the global combination process, the user can retrieve the
output directly in the parallel code region, and then feed the output
to the next Smart job.

The above execution flow modifies the original MapReduce pro-
cessing, but it is also the key to the high memory efficiency ofS-
mart. Specifically, explicit declaration of the reduction object elim-
inates the shuffling phase of MapReduce. In analytics program, be-
sides self-defined reduction object, both reduction and combination
operations can be customized via a simplified API. The specifics of
API through examples later in Section 3.4. However, the key point
is that besides the declaration of reduction object, the programming
effort is not any higher than the one involved in using the original
MapReduce API – since this API does not involve any paralleliza-
tion detail, the programmers only need to write sequential code,
leading to a good programmability like the conventional MapRe-
duce.

3.2 Two In-Situ Modes
To maximize the performance in different scenarios, our system
provides two in-situ modes –time sharingandspace sharing. More
specifically, we observe that: 1) for certain simulations and/or ar-
chitectures, memory can be a significant constraint, and we must
avoid unnecessary data copying, and 2) in many-core architectures,
simulations may not be able to use all available cores effectively,
and dedicating a certain number of cores for data analytics can be
feasible and desirable. The two situations described above(which
may not necessarily be exclusive), lead to thetime sharingands-
pace sharingmodes.
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Time Sharing Mode: Time sharing mode aims to minimize the
memory consumption of analytics, by avoiding extra data copy of
simulation output. Note that although the memory copy itself is
likely not an expensive operation, it can increase the totalmemory
requirements, which can lead to performance degradation incertain
cases.

As shown in Figure 3, to avoid an extra data copy, Smart sets aread
pointer on the memory space corresponding to the output from a
particular time-step (when the data is ready). Thus, this data can
be now shared by both simulation and analytics programs. How-
ever, because this memory space is subject to being overwritten by
the simulation program, the analytics logic must execute before the
simulation resumes. As a result, in this mode simulation andana-
lytics run in turns, and each makes full use of all the cores ofeach
node (and hence the name time-sharing).

Space Sharing Mode:Consider a cluster where every node is an
Intel Xeon Phi. Since each coprocessor has a much larger number
of cores than the CPU, a simulation program written for a standard
multi-core cluster is unlikely to use all cores of the Xeon Phi effec-
tively. In this case, instead of stopping the progress of simulation
periodically and performing the analytics, one can easily dedicate
a certain number of the available cores for the analytics. More
specifically, all the cores are divided into two separate groups –
one is specifically used for simulation, and the other is dedicated to
analytics. In this mode, besides the parallelism of multi-threading
as well as the parallelism on multiple nodes, another task-level par-
allelism is placed on top of these two parallelism levels.

As shown in Figure 4, Smart maintains acircular buffer internally,
in which each cell can allocate memory on demand and be used for
caching the output from a time-step. In this mode, one can view
simulation program and Smart as the producer and the consumer,
respectively. Once a time-step’s output is generated, if the circular
buffer is not full, then this data can be fed to the Smart middleware
by copying it to an empty cell. Otherwise, simulation program will
be blocked until a cell in circular buffer becomes available.

3.3 Launching Smart and the API Provided
by the Runtime

Smart is written in C++11, using OpenMP and MPI to achieve par-
allelism and to also be compatible with a scientific simulation en-
vironment. Thus, launching Smart does not require installing addi-
tional libraries (e.g., HDFS). Now we show how to launch Smart in
two different in-situ analytics modes. As summarized in Table 1,
a set of functions are provided by the runtime, which are simply
invoked in the application code to initialize the system andrun
the analytics. These functions are transparent to the programmers.
Specifically, functions1 - 4 in Table 1 are used in both modes,5
and6 are used in time sharing mode, and7 - 9 are used in space
sharing mode.

Listing 1: Launching Smart in Time Sharing Mode
1 void simulate(Out* out, size_t out_len, const Param&

p) {
2 /* Each process simulates an output partition of

data type In and length in_len. */
3 // Launch Smart after simulation in the parallel

code region.
4 SchedArgs args(num_threads, chunk_size,

extra_data, num_iters);
5 unique_ptr<Scheduler<In, Out>> smart(new

DerivedScheduler<In, Out>(args));
6 smart->run(partition, in_len, out, out_len);
7 }

Launching Smart in Time Sharing Mode: A distinguishing fea-
ture of Smart is theease of use. In time sharing mode, Smart
can minimize the modification of the original simulation code. As
demonstrated in Listing 1, to run Smart in this mode, only 3 lines
(lines4 - 6) need to be added to the simulation program.

The example code shows the execution of processing a single time-
step. After each data partition is simulated given a set of simulation
parametersp (line 2), line 4 constructs a scheduler argumentargs,
which specifies the number of threads per processnum_threads,
the size of a unit chunk (i.e., unit element)chunk_size, the ex-
tra data for analyticsextra_data, and the number of iterations
num_iters. To maximize the analytics performance,num_threads
should be equal to the number of threads used for simulation.chunk_size



Table 1: Descriptions of the Functions in the System API

Functions Provided by the Runtime

1) SchedArgs(int num_threads, size_t chunk_size, const void ∗ extra_data, int num_iters)
Initializes the Smart scheduler argument by specifying the# of threads, the size of a unit chunk, the extra data, and the #of iterations

2) explicit Scheduler(const SchedArgs& args)
Initializes the Smart runtime system

3) void set_global_combination(bool flag)
Enable or disable global combination, which is enabled by default

4) const map<int, unique_ptr<RedObj>>& get_combination_map() const
Retrieves the combination map

5) void run(const In ∗ in, size_t in_len, Out ∗ out, size_t out_len)
Runs the analytics by generating a single key given a unit chunk in time sharing mode

6) void run2(const In ∗ in, size_t in_len, Out ∗ out, size_t out_len)
Runs the analytics by generating multiple keys given a unit chunk in time sharing mode

7) void feed(const In ∗ in, size_t in_len)
Feeds an input in space sharing mode

8) void run(Out ∗ out, size_t out_len)
Runs the analytics by generating a single key given a unit chunk in space sharing mode

9) void run2(Out ∗ out, size_t out_len)
Runs the analytics by generating multiple keys given a unit chunk in space sharing mode

Functions Implemented by the User
1) virtual int gen_key(const Chunk& chunk, const In ∗ data, const map<int, unique_ptr<RedObj>>& com_map) const

Generates a single key given the unit chunk (and combinationmap if necessary)
2) virtual void gen_keys(const Chunk& chunk, const In ∗ data, vector<int>& keys,

constmap<int, unique_ptr<RedObj>>& com_map) const
Generates multiple keys given the unit chunk (and combination map if necessary)

3) virtual void accumulate(const Chunk& chunk, const In ∗ data, unique_ptr<RedObj>& red_obj) = 0
Accumulates the unit chunk on a reduction object

4) virtual void merge(const RedObj& red_obj, unique_ptr<RedObj>& com_obj) = 0
Merges the first reduction object into the second reduction object, i.e., a combination object

5) virtual void process_extra_data(const void ∗ extra_data, map<int, unique_ptr<RedObj>>& com_map)
Processes the extra input data to help initialize the combination map if necessary

6) virtual void post_combine(map<int, unique_ptr<RedObj>>& com_map)
Performs post-combination processing and update the combination map if necessary

7) virtual void convert(const RedObj& red_obj, Out ∗ out) const
Converts a reduction object to an output result if necessary

is the size of processing unit, and it can often be viewed as the
length of feature vectorin analytics applications.extra_data is
used when some additional input is required, e.g., the initial k cen-
troids are required in k-means clustering.num_iters can be speci-
fied for iterative processing. By default,extra_data andnum_iters
are initialized as a null pointer and 1, respectively. Line5 constructs
a derived Smart scheduler instancesmart with the scheduler argu-
mentargs. Note that Smart scheduler class is defined as a template
class, and hence Smart can be utilized for taking any array type as
input or output, without complicating the application code. In line
6, Smart launches analytics by taking the partitioned data asthe in-
put, and the final result will be output to the given destination. Dur-
ing the entire process, all the parallelization details arehidden in a
sequential programming view. Note that the definition of reduction
object, as well as the derived Smart scheduler class, are implement-
ed in a separate file based on another API set, which does not add
any complexity of the original simulation code (see Section3.4).

Listing 2: Launching Smart in Space Sharing Mode
1 void simulate(Out* out, size_t out_len, const Param&

p) {
2 /* Initialize both simulation and Smart. */
3 #pragma omp parallel num_threads(2)
4 #pragma omp single
5 {
6 #pragma omp task // Simulation task.

7 {
8 omp_set_num_threads(num_sim_threads);
9 for (int i = 0; i < num_steps; ++i) {

10 /* Each process simulates an output
partition of length in_len. */

11 smart->feed(partition, in_len);
12 }
13 }
14 #pragma omp task // Analytics task.
15 for (int i = 0; i < num_steps; ++i)
16 smart->run(out, out_len);
17 }
18 }

Launching Smart in Space Sharing Mode: As shown in List-
ing 2, space sharing mode requires more code reorganizationthan
time sharing mode, since an extra task-level parallelism has to be
deployed. Particularly, two OpenMP tasks are created for concur-
rent execution. After the initialization of both simulation and S-
mart, one task encapsulates the simulation code and then feeds its
output to Smart (lines6 - 13), and the other task runs analytics
(lines14 - 16). The number of threads used for simulation is spec-
ified within the simulation task. and the number of threads used
for analytics is specified when Smart is initialized. Note that MPI
codes are hidden in both simulation task and analytics task,and in
this mode MPI functions may be called concurrently by different



threads. Thus, to avoid the potential data race, the level ofthread
support should be upgraded toMPI_THREAD_MULTIPLEwhen
MPI environment is initialized.

3.4 Data Processing Mechanism and the API
Implemented by the User

Next, we introduce the data processing mechanism, as well asthe
API potentially to be implemented by the programmers, specific to
an application. This set of API is used for implementing therun
(or run2) function in the previous API set, and the same implemen-
tation can be used for both in-situ modes, as well as offline pro-
cessing. This API set mainly includes three functions –gen_keyor
gen_keys, accumulate, andmerge. gen_keyor gen_keys, as well as
accumulateare invoked in the reduction phase, andmergeis called
in the combination phase. Particularly, therun function invokes
gen_keyto generate a single key given a unit chunk for most ap-
plications, andrun2 function callsgen_keys(similar to theflatmap
function in Scala) to generate multiple keys given a unit chunk for
other analytics such as window-based applications [57]. Inaddi-
tion, the programmers need to define a specialized reductionobject
as a subclass of the interface classRedObj.

Algorithm 1: run(const In*in, size_tin_len, Out* out, size_t
out_len)
1: process_extra_data(extra_data_, combination_map_) {* Process

the extra data if needed *}
2: for each iterationiter do
3: if iter > 1 then
4: Distribute the global combination map to each local combination

map
5: end if
6: Distribute the local combination map to each reduction map
7: for each processing unitchunk ∈ in do
8: key← gen_key(chunk, data_, combination_map_)
9: accumulate(chunk, data_, reduction_map_[key])

10: end for {* Reduction *}
11: for each(key, red_obj) ∈ reduction_map_ do
12: if key exists incombination_map_ then
13: merge(red_obj, combination_map_[key])
14: else
15: movered_obj to combination_map_[key]
16: end if
17: end for {* Local combination and global combination *}
18: post_combine(combination_map_) {* Perform post-combine

operations if needed *}
19: end for
20: if out 6= NULL andout_len > 0 then
21: for each(key, red_obj) ∈ combination_map_ do
22: convert(red_obj, out[key])
23: end for
24: end if {* Output results from the combination map *}

Therun function in Algorithm 1 is used in time sharing mode, and
it shows the data processing mechanism in Smart. The space shar-
ing mode uses the same mechanism, with a minor difference in the
function signature. In the reduction phase, as a data block is di-
vided into multiple splits, each thread processes a data split chunk
by chunk. In line8, a key is generated for the unit element. Line
9 accumulates the derived data from the element into areduction
object, which can be located in the reduction map by the generat-
ed key. The reduction object is updated in place – no intermediate
key-value pair is emitted or stored, and thus, no shuffling phase is
needed during the reduction. This is a key difference between our
alternate API and the conventional MapReduce paradigm.

Lines11 - 17 show the combination phase consisting of two steps
– local combinationandglobal combination. In the local combi-
nation, the reduction maps maintained by all the threads on apro-
cess are combined into a local combination map. Particularly, the
two reduction objects associated with the same key are merged in-
to one. In the global combination, the local combination maps on
all compute nodes are further combined into a global combination
map that holds the global result. This global combination leverages
the same merge operation used for the local combination. Line 18
can update reduction objects after the combination phase for each
iteration, e.g., computing average based on sum and count. Finally,
lines20 - 23 convert all the reduction objects in the global combi-
nation map into the desired output.

Moreover, theprocess_extra_dataandpost_combinefunctions are
often used for the analytics involving iterative processing. Partic-
ularly, theprocess_extra_datafunction can help initialize combi-
nation map with the extra input. For example, k-means clustering
requires some initial centroids as the extra data besides the input
points, and those centroids can be used to initialize the reduction
objects that represent clusters. After the combination mapis ini-
tialized, it is then distributed to each reduction map (lines 3 - 6).
After the combination phase, thepost_combinefunction can help
update reduction objects. For instance, two fieldssumandsizein a
reduction object can be used to compute theaveragein this func-
tion. Additionally, for non-iterative applications, the two functions
actually involve no computation by default, leading to an empty
initial combination map. Finally, all the reduction objects in the
combination map are converted into the desired output, according
to theconvertfunction.

Additionally, the only difference between therun and run2 func-
tions is in lines8 and9. In therun2 function, given a chunk, mul-
tiple keys will be generated, and the chunk will be accumulated in
a loop that iterates over all the generated keys.

3.5 Smart Analytics Examples
We now illustrate the use of our system API by creating two exam-
ple applications,histogramandk-means clustering, as an instance
of non-iterative and iterative application, respectively. Note that the
application-specific analytics code is written in a separate file, and
it does not differ in different in-situ modes.

Listing 3: Histogram as a Non-Iterative Example Application

1 Derive a reduction object:
2 struct Bucket : public RedObj {
3 size_t count = 0;
4 };
5 Derive a system scheduler:
6 template <class In>
7 class Histogram : public Scheduler<In, size_t> {
8 // Compute the bucket ID as the key.
9 int gen_key(const Chunk& chunk, const In* data,

const map<int, unique_ptr<RedObj>>&
combination_map) const override {

10 // Each chunk has a single element.
11 return (data[chunk.start] - MIN)) /

BUCKET_WIDTH;
12 }
13 // Accumulate chunk on red_obj.
14 void accumulate(const Chunk& chunk, const In*

data, unique_ptr<RedObj>& red_obj) override
{

15 if (red_obj == nullptr) red_obj.reset(new
Bucket);

16 red_obj->count++;
17 }
18 // Merge red_obj into com_obj.



19 void merge(const RedObj& red_obj, unique_ptr<
RedObj>& com_obj) override {

20 com_obj->count += red_obj->count;
21 }
22 };

As the first example, Listing 3 shows the pseudo code of equi-width
histogram construction. Two major steps are taken. To beginwith,
the user needs to define a derived reduction object class. In this ex-
ample, the classBucket represents a histogram bucket, consisting
of a single fieldcount.

In the second step, a derived system scheduler class should be de-
fined, e.g.,Histogram here. Note that to facilitate the manipu-
lation on the datasets of different types, in our system the derived
class can be defined as either a template class or a class specific
to an input and/or output array type. For this kind of non-iterative
application, the user usually only needs to implement threefunc-
tions –gen_key, accumulate, andmerge. First, thegen_keyfunc-
tion computes the bucket ID based on the element value in the input
datachunk, and the bucket ID serves as the returned key. For ex-
ample, if the element value is located within the value rangeof the
first bucket, then 0 will be returned. For simplicity, we assume that
the minimum element value can be taken as priori knowledge orbe
retrieved by an earlier Smart analytics job. Note that in this appli-
cation, since each element should be examined individually, each
chunk as a processing unit only contains a single array element.
Next in the reduction phase, theaccumulatefunction accumulates
count of the bucket that corresponds to the key returned by the
gen_key function. Lastly, given two reduction objects, where the
first onered_obj is from the reduction map, and the second one
com_obj is from the combination map, themergefunction merges
count on com_obj in the combination phase.

Listing 4: K-Means Clustering as an Iterative Example Application

1 Derive a reduction object:
2 template <class T>
3 struct ClusterObj<T> : public RedObj {
4 T centroid[NUM_DIMS];
5 T sum[NUM_DIMS];
6 size_t size = 0;
7 void update(); // Update centroid by sum and

size, which are then reset.
8 };
9 Derive a system scheduler:

10 template <class T>
11 class KMeans : public Scheduler<T, T*> {
12 // Compute the ID of the nearest centroid as the

key.
13 int gen_key(const Chunk& chunk, const T* data,

const map<int, unique_ptr<RedObj>>&
combination_map) const override {

14 /* Let C be the a set of centroids from the
reduction objects in combination_map. */

15 /* Find the centroid c nearest to the point
represented by chunk from C. */

16 /* Return the key associated with c in
combination_map. */

17 }
18 // Accumulate chunk on sum and size of red_obj.
19 void accumulate(const Chunk& chunk, const T* data

, unique_ptr<RedObj>& red_obj) override {
20 red_obj->sum += chunk; // Vector addition.
21 red_obj->size++;
22 }
23 // Merge red_obj into com_obj on sum and size.
24 void merge(const RedObj& red_obj, unique_ptr<

RedObj>& com_obj) override {
25 com_obj->sum += red_obj->sum; // Vector

addition.
26 com_obj->size += red_obj->size;
27 }

28 // Process extra_data to set up the initial
centroids in combination_map.

29 void process_extra_data(const void* extra_data,
map<int, unique_ptr<RedObj>>&
combination_map) override {

30 /* Transform extra_data into a set of cluster
objects C. */

31 /* Load C into combination_map. */
32 }
33 // Update the clusters for the next iteration.
34 void post_combine}(map<int, unique_ptr<RedObj>>&

combination_map) override {
35 for (auto& pair : combination_map) {
36 RedObj* red_obj = pair->second.get();
37 red_obj->update();
38 }
39 }
40 // Extract the centroid from red_obj as the

output.
41 void convert(const RedObj& red_obj, T** out)

const override {
42 memcpy(*out, red_obj->centroid, sizeof(T) *

NUM_DIMS);
43 }
44 };

As shown by Listing 4, the second example is k-means cluster-
ing, which represents a set of applications involving iterative pro-
cessing. First of all, the classClusterObj is defined as a derived
reduction object class, indicating a cluster in a multi-dimensional
space. In this class,centroid, sum andsize represent the centroid
coordinate, the sum of the distances from each point to the centroid,
and the number of points in the cluster, respectively.

Next, KMeans is defined as a derived system scheduler class.
For this kind of iterative application, usually most virtual func-
tions should be overwritten. First, given a point represented by
the input datachunk, thegen_keyfunction finds the closest cen-
troid and returns the centroid ID as the key. Second, similarto the
previous example, theaccumulatefunction accumulates the two
distributive (or associative and commutative) fieldssum andsize
on the reduction object in reduction map, and themergefunction
accumulates reduction objects in combination map. Next, the pro-
cess_extra_datafunction initializes the combination map with the
extra data that indicates some initial centroids, and thepost_combine
function prepares for the next iteration, by updating all the cluster-
s. Specifically, the centroid coordinates are computed bysum and
size, which are then reset as zeros. Lastly, theconvert function
extracts the centroid coordinate from each reduction object as an
output result. To make use of this function, a restriction isthat, the
integer key should start from 0.

From the above two examples, we can see that Smart provides a
sequential programming view for application development,and the
user only needs to write some sequential code based on the de-
clared reduction object. Thus, like traditional MapReduceframe-
work, our system makes parallelism entirely transparent tothe ap-
plication code. Note that unlike a MapReduce job optimized by
a combiner function, our application code does not emit any key-
value pair as intermediate result.

4. SYSTEM OPTIMIZATION FOR WINDOW-
BASED ANALYTICS

4.1 Motivation
In practice, simulation output may contain some short-termvolatil-
ity or undesired fine-scale structures. In such cases, it is important
to perform analytics for specific ranges of time-steps, alsoreferred



to assliding windows. In some other cases, in-situ analytics can
involve certain preprocessing steps like denoising [17] and smooth-
ing [16,33], which also execute on a sliding window basis. A sim-
ple example of such window-based analytics ismoving average,
where the average of the elements within every window snapshot
is computed. A critical challenge in the implementation of such
window-based analytics is that ofhigh memory consumption, as
we will elaborate on the space complexity below.

The space complexity of window-based analytics implemented by
using MapReduce is determined by two factors, which arethe max-
imal number of key-value pairsandthe size of key-value pair. For-
mally, let the input size and window size beN andW , respectively.
In terms of the first factor, since each input element corresponds to
an output result, there are totallyN output results, which are trans-
formed fromN key-value pairs after reduction. Moreover, since
each element typically appearsW times in the sliding window,W
key-value pairs are generated by each element. Thus, in a conven-
tional MapReduce implementation, totallyN ×W key-value pairs
with N distinct keys are generated (at least in the mapping phase).
Smart can reduce the maximal number of key-value pairs toN ,
because each distinct key corresponds to a single reductionobject.
On the other hand, the size of key-value pair or reduction object
is dependent on the specific application, and it is typicallyvaried
from Θ(1) to Θ(W ). For example, since average isalgebraicand
can be computed by sum and count, the size of reduction objec-
t for moving average can be onlyΘ(1), while median isholistic
and can only be computed by preserving all elements, the sizeof
reduction object for moving median isΘ(W ). Another example is
K nearest neighbor smoother, where the size of reduction object is
Θ(K), 1 ≤ K ≤ W .

Overall, given a window-based application implemented by Smart,
the space complexity isΘ(N × R), whereN andR denote the
maximal number of reduction objects and the size of reduction ob-
ject, respectively. Irrespective of the application, sinceN can often
be too large to meet the memory constraints of in-situ scenarios,
it is very desirable to reduce the space complexity, especially by
reducing the maximal number of reduction objects.

4.2 Optimization: Early Emission of Reduc-
tion Objects

Algorithm 2: reduce(Splitsplit)

1: for each datachunk ∈ split do
2: for each keyk generated bychunk do
3: Let the reduction objectred_obj bereduction_map_[key]
4: accumulate(chunk, data_, red_obj)
5: if red_obj.trigger() then
6: convert(red_obj, out_[key])
7: reduction_map_.erase(key)
8: end if {* Optimization for early emission *}
9: end for

10: end for

We develop the optimization based on the following observation.
For most elements, all the associated window snapshots are en-
tirely covered by their respective local split of data. As a result,
most reduction object values have been finalized in in the (local)
reduction phase, and they will not be involved in the subsequen-
t combination phase. By capturing this observation, we design a
mechanism that can supportearly emission of reduction objectsin
the reduction phase, which is in contrast to the original design that
holds all the reduction objects until the combination phaseends.

Our optimization is implemented as follows. First, we extend the
reduction object class by adding atrigger function. This trigger
evaluates a self-definedemission condition, and determines if the
reduction object should be emitted early from the reductionmap.
By default, the function returnsfalse, and hence no early emission
is triggered. Second, we extend the implementation of reduce op-
eration, which is an internal step in Smart scheduling. Lines 5 - 7
in Algorithm 2 show the extension. Once a data element is accu-
mulated on a reduction object (line4), the added trigger function
evaluates a user-defined emission condition (line5). If this condi-
tion is satisfied, the reduction object will be immediately converted
into an output result, and then be erased from the reduction map
(lines6 and7). With such an optimization, the maximal number of
reduction objects need to be maintained is reduced from theinput
data sizeto thewindow size.

Listing 5: Moving Average as a Window-Based Example Application

1 Derive a reduction object:
2 struct WinObj : public RedObj {
3 double sum = 0;
4 size_t count = 0;
5 bool trigger() const override {
6 return count == WIN_SIZE;
7 }
8 };
9 Derive a system scheduler:

10 template <class In>
11 class MovingAverage : public Scheduler<In, double> {
12 // Take all the element positions covered by the

window as the keys.
13 void gen_keys(const Chunk& chunk, const In* data,

vector<int>& keys, const map<int,
unique_ptr<RedObj>>& combination_map) const
override {

14 // Each chunk has a single element, which is
the center of the window.

15 for (int i = max(chunk.start - WIN_SIZE / 2,
0); i <= min(chunk.start + WIN_SIZE / 2,
total_len_); ++i) {

16 keys.emplace_back(i);
17 }
18 }
19 // Accumulate chunk on red_obj.
20 void accumulate(const Chunk& chunk, const In*

data, unique_ptr<RedObj>& red_obj) override
{

21 if (red_obj == nullptr) red_obj.reset(new
WinObj);

22 red_obj->sum += data[chunk.start];
23 red_obj->count++;
24 }
25 // Merge red_obj into com_obj.
26 void merge(const RedObj& red_obj, unique_ptr<

RedObj>& com_obj) override {
27 com_obj->sum += red_obj->sum;
28 com_obj->count += red_obj->count;
29 }
30 // Transform red_obj into average as the output.
31 void convert(const RedObj& red_obj, double* out)

const override {
32 *out = red_obj->sum / red_obj->count;
33 }
34 };

To support such an optimization, the user only needs to overwrite
the trigger function when deriving the reduction object class. List-
ing 5 shows the implementation of moving average as a window-
based application example. In this example, the reduction object
counts the number of elements covered by a window, and the emis-
sion condition can be whether the count is equal to the windowsize.
Note that since each input element contributes to multiple window
snapshots, here we use thegen_keys function instead ofgen_key
in Table 1, to map each element to multiple keys. It should be



noted that, this optimization is not only specific to in-situwindow-
based analytics, but also can be broadly applied to other applica-
tions, even for offline analytics [28, 31, 41, 42, 52, 53, 56, 60, 61].
A simple example can be matrix multiplication, where the number
of element-wise multiplications that contribute to a single output
element is a fixed number.

5. EXPERIMENTAL RESULTS
In this section, we evaluate both efficiency and scalabilityof our
system on both multi-core and many-core clusters. First, wecom-
pare with Spark [64] – a popular MapReduce implementation (while
also providing other functionality), which has been shown to out-
perform Hadoop by up to 100x. Second, we compare with analyt-
ics programs written with lower-level APIs (MPI and OpenMP), to
measure both the programmability and overheads of our middle-
ware approach. Third, we evaluate the scalability of Smart as the
number of nodes and cores is increased. Next, we focus on under-
standing and comparing performance for time sharing and space
sharing modes. Lastly, we evaluate the effect of the optimization
for window-based analytics, by comparing the performance with
an implementation that disables the trigger mechanism.

5.1 Applications and Environmental Setup
We experimented with nine applications that represent six differ-
ent classes of in-situ analytics – these classes were previously de-
scribed as in-situ use cases from the literature in Section 2.2. The
classes of analytics and specific applications are: 1)visualization:
grid aggregation[57] groups the elements within a grid into a s-
ingle element for multi-resolution visualization, 2)statistical an-
alytics: histogramrenders data distribution with equi-width buck-
ets, 3)similarity analytics: mutual informationreflects the sim-
ilarity or correlation between two variables, 4)feature analytics:
logistic regressionmeasures the relationship between a dependent
variable and multiple independent variables; 5)clustering analyt-
ics: k-meanstracks the movement of centroids in different time-
steps [67]; and 6)window-based analytics: moving averageand
moving mediancompute average and median in a sliding window,
respectively,Gaussian kernel density estimationplots data density
with the Gaussian kernel, andSavitzky-Golay filter[39] is a well-
known smoothing filter.

The above analytics programs can be applied on a variety of simula-
tion programs. However, from a performance view-point, only two
aspects of the simulation program are important for us – the memo-
ry requirements for the simulation, and relative to it, the amount of
data that is either output or needs to be analyzed every time-step.
Thus, we choose two open-source simulation programs that have
very different amounts of output. Specifically, for every time-step
in our experimental setup, Heat3D [2] generates large volumes of
data, e.g., 400 MB per node, whereas Lulesh [3] has a moderate
amount of output, which is typically smaller than 100 MB on each
node.

Our experiments were conducted on two different clusters. The first
cluster is a more traditional cluster with multi-core nodes– specifi-
cally, each node is an Intel(R) Xeon(R) Processor with 4 dual-core
CPUs (8 cores in all). The clock frequency of each core is 2.53
GHz, and the system has a 12 GB main memory. We experiment
with time sharing mode only on this cluster, as the simulation pro-
gram can be expected to scale with all available cores. We have
used up to 512 cores (64 nodes).The second cluster has a many-
core accelerator on each nodes, and both time sharing and space
sharing modes are used and compared. Each node on this clus-

ter has an Intel Xeon Phi SE10P coprocessor, with 61 cores anda
clock frequency of 1.1 GHz (488 cores in total). The memory size
of coprocessor is 8 GB.

5.2 Performance Comparison with Spark
Although Spark can directly load data from memory and hence can
address the data loading mismatch, it cannot overcome the other
three mismatches mentioned in Section 2.3. Thus, to make a fair
comparison, we let Spark bypass all the other mismatches with the
following setup: 1) to bypass the programming view mismatch,
the simulation program was replaced by a simple emulator – a se-
quential program that outputs double precision array elements that
follow a normal distribution, and in addition, the experiments were
only conducted on a single node with 8 cores, 2) the memory con-
straint mismatch was also addressed by the use of the emulator
which hardly consumed any extra memory, and thus there was no
tight memory bound for the analytics programs; and 3) to bypass
the programming language mismatch, the emulator used by Spark
was written in Java. 40 GB data was output from the simulation,
over 800 time-steps, and the number of threads used for analytics
was varied from 1 to 8. The version of Spark used was 1.1.1.

We used three applications for comparison, with the following pa-
rameters – 1)logistic regression: the number of iterations and the
number of dimensions were 10 and 15, respectively; 2)k-means:
the number of centroids, the number of iterations, and the number
of dimensions were 8, 10, and 64, respectively; and 3)histogram:
100 buckets were generated. Particularly, both logistic regression
and k-means were implemented based on the example codes pro-
vided by Spark. Since the emulation code was not parallelized, here
we only report the computation times of analytics.

The comparison results are shown in Figure 5. Smart can outper-
form Spark by up to 21x, 62x, and 92x, on logistic regression,k-
means, and histogram, respectively. The reason for such a large
performance difference is three-fold. First, like other MapReduce
implementations, Spark emits massive amounts of intermediate da-
ta after the map operation, and grouping is required before reduc-
tion. By contrast, Smart performs all reduction in place of reduc-
tion maps, avoids emitting any key-value pairs, and thus, com-
pletely eliminates the need for grouping. Moreover, every Spark
transformation operation makes a new RDD (Resilient Distributed
Dataset) [63] due to its immutability. In comparison, all Smart op-
erations are carried out on reduction maps and combination maps,
and these maps can be reused even for iterative processing. Fur-
ther, Spark serializes RDDs and send them through network even
in local mode, whereas Smart avoids copying any reduction object
from reduction map to combination map, by taking advantage of
the shared-memory environment within each compute node.

Besides the efficiency advantage, we can also see that Smart scales
much better than Spark, at least in the shared-memory environmen-
t. Particularly, Smart can achieve a speedup of 7.95, 7.71, and 7.96,
by using 8 threads on logistic regression, k-means, and histogram,
respectively. This is because that, Spark can only allow thenumber
of worker threads to be controlled by the user, while it stilllaunch-
es extra threads for other tasks, e.g., communication and driver’s
user interface. Particularly, we can see that, when 8 workerthreads
were used for Spark execution, the speedup becomes relatively s-
mall, because not all 8 cores are being used for computation.By
contrast, Smart does not launch any extra threads, and the analytics
is efficiently parallelized on all threads.
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Figure 5: Performance Comparison with Spark

In addition, Smart can also achieve a much higher memory efficien-
cy than Spark. It turns out that for all the three applications, Spark
takes up constantly over 90% of the total memory (12 GB) whereas
the memory consumption of Smart is only 4.3% (528 MB). Since
the time-step size is already 512 MB, the analytics program run by
Smart actually consumes only around 16 MB memory. Note that
the time-step size is much smaller than the memory capacity,and
hence Spark is very unlikely to spill the input to the disk.

5.3 Performance Comparison with Low-level
Analytics Programs
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Figure 6: Performance Comparison with Low-Level Programs

In the second experiment, we compared both the programmability
and performance of analytics programs written using Smart against
the ones that were manually implemented in OpenMP and MPI. We
used logistic regression and k-means with the same parameters as
in Section 5.2. 1 TB data were processed on a varying number of
nodes, ranging from 8 to 64.

First, it turns out that Smart is effective in simplifying application
development, by saving the efforts on implementing and debugging
low-level parallelization details. Specifically, for k-means and lo-
gistic regression, 55% and 69%, respectively, of the lines of Open-
MP/MPI codes in the low-level implementations are either elimi-
nated or converted into sequential code by Smart. Note that these
low-level codes are usually the most error-prone part for the pro-
grammers.

Second, we will like to understand performance overheads that
arise as well. Figure 6 shows the results. First, we find that the low-
level codes for k-means can outperform Smart version by up to9%.
Such performance difference is mainly due to the extra overheads
involved in the global combination of Smart. In the manual im-
plementation, the synchronized data is stored in contiguous arrays,
and the global synchronization can be done by a single MPI func-
tion call (MPI_Allreduce). By comparison, Smart stores reduction

objects in a map structure noncontiguously, and hence an extra se-
rialization of these objects is required by global combination. Note
that we follow such a design for a better applicability and flexibil-
ity – the keys do not have to be continuous integers on each node,
and early emission of reduction objects can be supported. Second,
it turns out that the performance difference on logistic regression is
unnoticeable, because only a single key-value pair is maintained in
this application and trivial serialization is needed. Overall, since in
practice the total processing cost is mostly dominated by the sim-
ulation program, we do not expect noticeable overheads fromour
framework over hand-written low-level code.

5.4 Scalability Evaluation
The next set of experiments evaluate the scalability of Smart, by
using both Heat3D and Lulesh simulations, and nine analytics pro-
grams: 1)grid aggregation: the grid size was 1,000; 2)histogram:
the number of buckets was 1,200; 3)mutual information: the num-
ber of buckets for each variable was 100, and hence the 2-dimensional
space was divided into up to 10,000 cells; 4)logistic regression: the
number of iterations and the number of dimensions were 3 and 15,
respectively; 5)k-means: the number of centroids, the number of
iterations, and the number of dimensions were 8, 10, and 4, respec-
tively; and 6) the four window-based applications, including mov-
ing average, moving median, (Gaussian) kernel density estimation,
as well asSavitzky-Golay filter: the window sizes were all 25.
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Figure 7: In-Situ Processing Times with Varying # of Nodes on
Heat3D (Using 8 Cores per Node)

First, we evaluate the total processing times on Heat3D, as we scale
the number of compute nodes from 4 to 32, with 8 threads on each
node being used for both simulation and analytics. 1 TB data was
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Figure 8: In-Situ Processing Times with Varying # of Threadson
Lulesh (Using 64 Nodes)

output by Heat3D over 100 time-steps. As Figure 7 shows, Smart
can achieve 93% parallel efficiency on average for all the applica-
tions. Particularly, we can even see that, for some cases where 16
nodes are used, a super linear scalability can be achieved. Such an
extra speedup is caused by the reduction in memory requirements
per node as more compute nodes are used.

Second, we evaluate the performance of scaling the number of
threads on 64 nodes by using Lulesh. Lulesh output 1 TB data
over 93 time-steps. The number of threads used for both simula-
tion and analytics per node was up to 8. Figure 8 shows the results.
Smart can achieve 59% and 79% parallel efficiency on average for
the first five applications, and the other four window-based appli-
cations, respectively. The difference in parallel efficiency is related
to the nature of these applications. For example, compared with
the first five applications, the window-based applications are more
compute-intensive, and the synchronization overheads weigh much
less in the total processing cost, leading to a better scalability.

5.5 Evaluating Memory Efficiency
We next demonstrate a key advantage of Smart design (its time
sharing mode implementation) – in-situ analytics can be support-
ed evenwithout involving an extra copyof the simulation output.
Many simulation programs practically use almost all available mem-
ory on the machine, and unnecessary copying of data can lead to
severe performance degradation – this is even more important as
memory to flop ratio has decreased with many recent systems. We
evaluate such impact by comparing the performance with an imple-
mentation involving data copy.

In this set of experiments, 1 TB data was output by Heat3D on 4
nodes, and by Lulesh on 64 nodes. Logistic regression and mu-
tual information were used as analytics programs on Heat3D and
Lulesh, respectively, with the same parameters as for the exper-
iments in Section 5.4. To vary the memory consumption in the
simulation program. we varied the time-step size for each simula-
tion run as follows. For Heat3D, we could vary the length of one
dimension of the 3D problem size, and hence we varied the time-
step size as well as the memory consumption linearly. Particularly,
the time-step size was varied from 0.6 GB to 1.8 GB. For Lulesh,
we could vary the edge size of a 3D array cube simulated on each
node, and hence by varying the edge size linearly, we could result
in a cubic growth of memory consumption. Particularly, the edge
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Figure 9: Evaluating the Efficiency of Time Sharing Mode

size was varied from 100 to 233, and the corresponding time-step
size was varied from 1.5 GB to 18.3 GB.

As shown in Figure 9, we can see that when our system does not
involve any data copy, there can be a notable performance improve-
ment. For Heat3D, with a time-step greater than 1.4 GB, our system
can outperform the other implementation by up to 11%. Note that
a time-step of 1.8 GB makes the system reach the memory bound
in our setup, since a time-step of 2 GB can result in a crash. For
Lulesh, with an edge size smaller than 220, only a performance
gain of up to 7% is achieved. This is because the size of simulated
data on each node is only 247 MB, which is very small compared
with the memory capacity (12 GB). However, when the edge size
reaches 233, the memory consumption of the implementation in-
volving data copy becomes very close to the physical capacity, and
hence its processing time increases substantially. For this case, our
system can achieve a speedup of 5x.

5.6 Comparing Time Sharing and Space Shar-
ing Modes

Recall that in the space sharing mode, both simulation and analyt-
ics run concurrently, using two separate groups of cores on each
node. All of our experiments so far have considered the time shar-
ing mode only. Now we evaluate the efficiency of space sharing
mode, by comparing against the performance in time sharing mod-
e, as well as the performance of pure simulation as a baseline, on a
many-core cluster.

In this set of experiments, 1 TB data was output by Lulesh on 8
Xeon Phi nodes. Since it turns out that the simulation could not
benefit from hyperthreading on the coprocessors, we only used 60
threads for computation in this mode, and 1 core was reservedfor
scheduling and communication. Histogram, k-means, and moving
median were used as analytics programs, with the same parame-
ters as for the experiments in Section 5.4. Besides time sharing
and ‘simulation-only’ versions, to vary the number of coresused
for simulation and analytics in space sharing mode, we used 5dif-
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Figure 10: Evaluating the Efficiency of Space Sharing Mode

ferent versions, in which the number of cores used for simulation
was varied from 50 to 10, and the remaining cores were used for
analytics.

The results are shown in Figure 10. Here, “n_m” denotes a space
sharing scheme withn threads for simulation andm threads for
analytics. First, although the best performance in space sharing
mode is achieved by different schemes for different applications, it
does not incur too much overhead compared with the ‘simulation-
only’ performance, even with a moderate amount of computation
(as shown in Figure 10(c)). Second, the best performances ins-
pace sharing mode for k-means and moving median are achieved
by “50_10” and “30_30”, and reflect a performance improvemen-
t of over the time sharing mode by 10% and 48%, respectively.
This is because space sharing mode can make better use of some
cores, when simulation reaches its scalability bottleneck. In addi-
tion, we also notice that not all applications can benefit from space
sharing mode – the best performance of histogram in space sharing
mode (achieved by “50_10”) is 4.4% lower than the performance
from the time sharing mode. This is because the synchronization
(or message passing) cost in histogram is relatively higherthat in
the other two applications, and space sharing mode can only exe-
cute the message passing in simulation and analytics sequentially,
to avoid the potential data race in MPI, i.e., only a single thread
can call MPI function at a time during concurrent execution.Thus,
we conclude that space sharing mode can be advantageous whena
simulation program does not scale well with increasing number of
cores, but it is not a good fit for the applications involving frequent
synchronization.

5.7 Evaluating the Optimization for Window-
Based Analytics

The last set of experiments evaluate the effect of optimization for
window-based analytics. Specifically, we compare the optimized
version against an implementation that does not set a trigger func-
tion and hence cannot support early emission of the reduction ob-
ject. In the first experiment, we used Heat3D to simulate 300 GB
data, and used moving average as the analytics program on 4 n-
odes. Similar to the previous experiment, we varied the time-step
size from 0.5 to 1 GB in Heat3D, and the window size of moving
average was 7. In the second experiment, 1 TB data was output by
Lulesh, and then analyzed by moving median on 64 nodes. We also
varied the size of simulated data on each node from 5.2 to 186 MB
in Lulesh, by varying the edge size of array cube from 60 to 200,
and the window size of moving median was 11.

The results are shown by Figure 11. We can see that the optimiza-
tion can lead to a speedup of up to 5.6 and 5.2 in the two experi-
ments, respectively, which is because of the memory efficiency. For
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Figure 11: Evaluating the Effect of Optimization for Window-
Based Analytics

instance, with such an optimization, it turns out that the maximal
number of reduction objects maintained by Smart can be decreased
by 1,000,000 times for the case of the moving average application.
Moreover, a time-step of 1 GB in Heat3D, or an edge size of 200 in
Lulesh, can result in a crash from the implementation without the
trigger mechanism, due to the extremely large memory consump-
tion – we have not even reported the results for these two cases.

5.8 Discussion
It is worth noting that our system is specifically designed for scien-
tific analytics. Thus, although thebyte streamdata model in con-
ventional MapReduce does not match the array data model preva-
lent in scientific analytics [7], our system does not have such a mis-
match. In our system, the data chunk for unit processing natively
preserves array positional information, and hence it can support
ad-hoc structural analytics [57], e.g., grid aggregation and mov-
ing average. Moreover, we believe our system can well support
a variety of scientific analytics, from both applicability and per-
formance view-points. Unlike the scientific simulations that often
require point-to-point communication and fail to fit into MapRe-
duce, many complex analytics programs can still be expressed as
MapReduce jobs or even nuanced MapReduce pipelines (e.g., mu-
tual information). We have also demonstrated the high efficiency



of our system compared with the manual implementations in low-
level libraries.

6. RELATED WORK
As recent years have witnessed an increasing performance gap be-
tween I/O and compute capabilities, in-situ scientific analytics [21,
23,65,73] has attracted much attention. As we stated in Section 1,
the research on in-situ scientific analytics has been mainlyfocused
on two areas –applicationsand platforms. In-situ applications
and algorithms have been extensively studied, with work on top-
ics including indexing [20, 23], compression [24, 74], visualiza-
tion [19, 62, 72], and other analytics like object tracking [67], fea-
ture extraction [25], and fractal dimension analysis [50].On the
other hand, in-situ resource scheduling research that offers plat-
forms can be classified intotime sharingand space sharingcat-
egories. An example of time sharing platform is GoldRush [70],
which runs analytics on the same simulation cores. Since sim-
ulation and analytics are tightly coupled, cycle stealing becomes
critical for performance optimization. For the case of space shar-
ing platforms, CPU utilization of simulation and analyticsare de-
coupled, while the memory bound on analytics still holds. Exam-
ples of efforts include Functional Partitioning [26], and the system-
s Damaris [12] and CoDS [66]. By contrast, our work explores
the opportunities in in-situ scientific analytics at theprogramming
modellevel. Broadly, in-situ applications can benefit from Smart
by adapting the system API and abstracting parallelization, while
Smart can be deployed on top of any of the in-situ resource schedul-
ing platforms.

In a broader context of online resource scheduling platforms, an-
other two processing modes have been studied in addition to in-situ
processing. The first isin-transit processing, where by leveraging
extra resources, online analytics can be moved to dedicatedstaging
nodesthat are different from the nodes where simulation runs. Plat-
forms supporting this mode include PreDatA [69], GLEAN [50],
JITStager [4], and NESSIE [35]. Based on the observation that
in-situ and in-transit modes can complement each other, thesec-
ond mode is that ofhybrid processing. This mode is supported
on many platforms, including ActiveSpaces [10], DataSpace[11],
FlexIO [71], and others [6]. Our system can be incorporated into
these platforms to support in-transit or hybrid processing.

We had earlier compared the limitations of various MapReduce im-
plementations for possible in-situ analytics, and have extensively
compared our work against Spark. In addition, iMR [30] is specif-
ically designed for in-situ log stream processing. To meet the in-
situ resource constraints, iMR focuses on lossy processingand load
shedding. Smart, in comparison, is based on a distinct API that
reduces memory requirements. Further, integrating MapReduce
with scientific analytics has been a topic of much interest recent-
ly [7, 29, 32, 40, 49, 51, 59, 68]. SciHadoop [7] integrates Hadoop
with NetCDF library support to allow processing of NetCDF da-
ta with MapReduce API. SciMATE [59] is a MapReduce variant
that can transparently process scientific data in multiple scientif-
ic formats. Zhaoet al. [68] implement a parallel storage and ac-
cess method for NetCDF data based on MapReduce. The Ke-
pler+Hadoop project [51] integrates MapReduce with Kepler, which
is a scientific workflow platform. Himach [49] extends MapReduce
to support molecular dynamics trajectory data analysis. MARP [40]
and KMR [32] are other two MapReduce-based frameworks that
can support scientific analytics in MPI environment. SciHive [15]
can support querying scientific data like some scientific data query
processing engines [45,58], and it is built on top of MapReduce. In

contrast, Smart is designed for in-situ processing, and according-
ly, the focus is on addressing the data loading mismatch, memory
constraint, and other similar issues. Moreover, Smart is not bound
to any specific scientific data format, since its input is considered
to be resident in (distributed) memory.

7. CONCLUSIONS
In this paper, we have developed and evaluated a system that ap-
plies MapReduce-style API for developing in-situ analytics pro-
grams. Our work has addressed a number of challenges in creating
data analytics programs from a high-level API that is efficient and
can share resources with an ongoing simulation program.

We have extensively evaluated our framework. Performance com-
parison with Spark shows that our system can achieve high efficien-
cy in in-situ analytics, by outperforming Spark by at least an order
of magnitude. We also show that our middleware does not add
much overhead (typically less than 10%) compared with low-level
implementations. Moreover, we have demonstrated both the func-
tionality and scalability of our system by running different simula-
tion and analytics programs in different in-situ modes on clusters
with multi-core and many-core nodes. We can achieve 93% paral-
lel efficiency on average. Finally, we show that our optimization
for in-situ window-based analytics can achieve a speedup ofup to
5.6. Smart is an open-source software, and the source code can be
accessed athttps://github.com/SciPioneer/Smart.
git.
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