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ABSTRACT

Recent years have witnessed an increasing performanceegap b
tween 1/O and compute capabilities. In-situ analytics, chihtan
avoid expensive data movement of simulation output datadsy ¢
locating both simulation and analytics programs, hasyabelen
shown to be an effective approach to reduce both 1/0 and stor-
age costs. Developing an efficigntsituimplementation involves
many challenges, including parallelizing the analysisfqgening
required data movement or sharing, and allocating apptgpre-
sources for the execution of the analytics program(s). MajRe
has been a widely adopted programming model for paralfejida-

ta analytics. However, despite the popularity of MapRedthere

are several obstacles to applying its APl and implementirigri
in-situ scientific analytics.

In this paper, we present a novel MapReduce-like framewdnik v
supports efficient in-situ scientific analytics. Our sysiemeferred
to as in-$u MApReduce liTe (Smart). Smart can load simulated
data directly from memory in each node of a cluster. It legesga
a MapReduce-like API to parallelize the analytics, whileetireg
the strict memory constraints on the analytics code whes ¢oi
located with simulation. Using Smart for in-situ analytresjuires
only minimal changes to the simulation program itself. Sroan
be launched from parallel (OpenMP and/or MPI) code regiareon
each simulation output partition is ready, while the glcdoaalytic-

s result can be directly obtained after the parallel codeeqes.
We have developed both time sharing and space sharing mades f
maximizing the performance in different scenarios. MoerpG-
mart also incorporates an optimization for efficient inssiindow-
based analytics.
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achieve high efficiency in in-situ analytics, by outperfamm S-
park by at least an order of magnitude. We also show that our
middleware does not add much overhead (typically less tBés) 1
compared with handcrafted analytics programs. By usirfgrdint
simulation and analytics programs on both multi-core andyma
core clusters, we have demonstrated both the functionatity s-
calability of our system. We can achieve 93% parallel efficie
on average. Next, we show the efficiency of both time sharty a
space sharing modes. Finally, we also show that our opttiniza
for in-situ window-based analytics can achieve a speedwp ab
5.6.
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1. INTRODUCTION

A major challenge faced by data-driven discovery from ddien
ic simulations [47, 54, 55] is a shift towards architectuvdsere
memory and I/O capacities are not keeping pace with theasang
computing power [27]. There are many reasons for this caimstr

t on HPC machines. Most critically, the need for providingthi
performance in a cost and power effective fashion is driarai-
tectures with two critical bottlenecks -memory boundnddata
movement cos{®2]. Scientific simulations are being increasingly
executed on systems with coprocessors and acceleratdrg]iimg
GPUs and the Intel MIC, which have a large number of cores but
only a small amount of memory per core. As power considenatio
are driving both the design and operation of HPC machinesepo
costs associated with data movement must be avoided.

Performance comparison with Spark shows that our system can!n response to this unprecedented challemgsitu analytics[21,

3,65, 73] has emerged as a promising data processing garadi
and is beginning to be adopted by the HPC community. This ap-
proach co-locates the upstream simulations with the doeaust
analytics on same compute nodes, and hence it can laungft-anal
ics as soon as simulated data becomes available. Compaited wi
traditional scientific analytics that processes simulafa offline,
in-situ analytics can avoid, either completely or to a vengé ex-
tent, the expensive data movement of massive simulatiopubut
to persistent storage. This translates to saving in exattitnes,
power, and storage costs.



1.1 Motivation

The current in-situ analytics research can be very broddlysc
fied into two areas: 1) in-situ algorithms at theplication lev-
el, including indexing [20, 23], compression [24, 74], visaat
tion [19, 62, 72], and other analytics [25, 50, 67]; and 2)siiu
resource scheduling platforms at thgstem levelwhich aim to
enhance resource utilization and simplify the managemenb-o
located analytics code [4,6,11,35,50,70]. These in-sitdiaware
systems mainly play the role of@ordinator, aiming to facilitate
the underlying scheduling tasks, such as cycle stealinp 4@@
asynchronous 1/0 [50].

Despite a large volume of recent work in this area, an importa
question remains almost completely unexplorezhiri the applica-
tions be mapped more easily to the platforms for in-situ wiieg?".

In other words, we posit thagrogramming modetesearch orin-
situanalytics is needed. Particularly, in-situ algorithmsaneent-

ly implemented with low-level parallel programming libies such
as MPI, OpenMP, and Pthread, which offer high performande bu
require that programmers manually handle all the paralébn
complexities. Moreover, because similar analytics mayp@ied

in both in-situ and offline modes, another interesting qoasis
“can the offline and in-situ analytics codes be (almost) idaii”.
Clearly, this is likely only if the implementation is in a tidevel
framework, where details like loading and staging data and-c
plexity of parallelization are hidden from the applicatieveloper.

1.2 Our Contributions

In this paper, we describe a novel MapReduce-like frameviark
in-situ scientific analytics. To the best of our knowleddpés frame-
work is the first work to exploit a high-level MapReduce-like1

in in-situ scientific analytics. The system is referred taraSitu
MApReduce lite (Smart). Our system can support a variety of
scientific analytics on simulation nodes, with minimal nfuodi-
tion of simulation code and without any specialized deplegm
(such as installing HDFS). Compared with traditional Mag&ese
frameworks, Smart supports efficient in-situ processingdxess-
ing simulated data directly from memory in each node of atelus
or a distributed memory parallel machine. Moreover, unttke
traditional implementations, we base our work on a varidrihe
MapReduce API, which avoids outputtikgy-valuepairs and thus
keeps the memory consumption of analytics programs low.d¥o a
dress the mismatch between parallel programming view afilsim
tion code and sequential programming view of MapReduce rSma
can be launched from parallel (OpenMP and/or MPI) code regio
once each simulation output partition is ready, while thabgl an-
alytics result can be directly obtained after the paraltalec con-
verges. Further, we have developed btithe sharingand space
sharing modes for maximizing the performance in different sce-
narios. Additionally, for memory-intensive window-basaaalyt-
ics, we improve the in-situ efficiency by supporting earlyigsion

of reduction object

We have extensively evaluated both the functionality afidiehcy

of our system, by using different scientific simulations a-
lytics tasks on both multi-core and many-core clusters. \\& fi
show that our system can outperform Spark [64] by at leastan o
der of magnitude for three applications. Second, we showotina
middleware does not add much overhead (typically less théf) 1
compared with analytics programs written with low-levebgram-
ming libraries (i.e., MPl and OpenMP). Next, by varying them
ber of nodes and threads, we demonstrate high scalabilibuof
system. Moreover, by comparing with another implementatib

our system that involves an extra copy of simulated data,he&/s
the efficiency of our design (for time sharing mode). Furthes
also evaluate how our space sharing mode is suitable forectus
with many-core nodes. Finally, we show our optimization ifor
situ window-based analytics can achieve a speedup of uGtp.
comparing it with an implementation that disables earlyssioin
of the reduction object.

2. BACKGROUND AND CHALLENGES

In this section, we first provide background information ofsitu
scientific analytics and MapReduce, then argue why the MapRe
duce API is suitable for in-situ analytics, and finally foaus the
challenges in applying the MapReduce idea for efficienitinsgi-
entific analytics.

2.1 Background: In-Situ Scientific Analytics
and MapReduce

As the performance gap between 1/0O and compute capabifities
been increasing unprecedentediysitu data processing has been
widely used in a variety of scientific analytics [20, 24, 25,62,72,
74]. This emerging data processing paradigm can avoid exgen
data movement of simulation output by co-locating both $mu
tion and analytics programs, leading to a significant rédodn
both 1/0 and storage costs. As a case study, we compare tloe-per
mance of in-situ analytics, against the traditional offlarelytics
which runs in a store-first-analyze-after manner — first oigtgim-
ulated data to disk and then loads the data into analytiayanes.
We used a real-life simulation program Heat3D [2], as welkas
means clustering as the analytics program, to process 1 T8 da
on 64 cores in time sharing mode. To vary the amount of computa
tion, we used different number of iterations (before cogeece) in
the k-means algorithm. Figure 1 shows the total processinest
including both simulation and analytics time, as well as lf@
overheads involved by offline analytics. It turns out thagrewith

a moderate amount of computation, in-situ analytics cdhosti-
perform offline analytics by up to 10.4x.
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Figure 1: A Case Study: Performance Comparison Betweeitin-S
and Offline K-Means Clustering

Despite the performance gain compared with traditionainaffhn-
alytics, to minimize the impact on simulation performanicesitu
analytics requires that some strict resource constramitadt. Par-
ticularly, since co-located simulation and analytics shthe same
memory resource, and simulations are often memory-bounsl, i
very desirable that the in-situ analytics program operaidsonly

a small amount of memory.

On the other hand, MapReduce [9] was proposed by Google for
scalable application development for data-centers. Wighrgple
interface of two functionsmapandreduce this model has a great



suitability for the parallel implementations of a varietfyapplica-
tions, including large-scale scientific analytics [7, 28,40, 49,51,

59, 68]. Themapfunction takes a set of input instances and gen-

erates a set of corresponding intermediate outy, valueypairs.
The MapReduce library groups together all of the interntedial-
ues associated with the same key and shuffles them tethee

function. Thereducefunction, also written by the users, accepts a

key and a set of values associated with that key. It mergegheg
these values to form a possibly smaller set of values.

2.2 Opportunity and Feasibility

System (HDFS). Moreover, Hadoop actually mimics Google’s
MapReduce [9], which loads data from the Google File System
(GFS). Additionally, Disco [1], a MapReduce implementatin

Erlang, loads data from Disco Distributed File System (DRFS

2. Loading Data from Shared and/or Local File Systems Sys-

tems like MARIANE [14] and CGL-MapReduce [13] have adapt-
ed MapReduce to scientific analytics environment by loadarg

ta from a shared file system. Moreover, other MPI-based imple
mentations like MapReduce-MPI [37] and MRO-MPI [34] can

load data from shared file system and/or local disk.

MapReduce [9] has been one of most widely adopted progragimin 3. Loading Data from Memory: Pthread-based MapReduce pro-

model for developing data analytics implementations —ghaitis
perhaps not as widely accepted for science areas as it i®fior ¢
mercial areas. MapReduce API not only simplifies parakiian,
but the framework implementation handles much of schedulin

task management, and data movement. However, none of its cur

rent implementations is directly suitable for in-situ sttific ana-
Iytics.

We posit that MapReduce API is indeed suitable for a large set

of analytics tasks one might perform in-situ on a scientifinus
lation. Now we give some specific use cases of in-situ aralyti
s reported in various studies, and how these cases can iptifent
fit the MapReduce paradigm: 1) visualization algorithms g9,
where most steps are embarrassingly parallel and othextv@nke-
ductions; 2) statistical analytics [72] and similarity biias [44]
where statistics like averages, histogram, and mutuatrimdtion
need to be calculated — steps that are very well suited forRdap
duce [7], or even higher-level frameworks built on top of NRap
duce, e.g., Pig [36] and Hive [48]; and 3) feature analyt®s pnd
clustering analytics [67], which have been efficiently iemplented
in MapReduce (though in an offline fashion), e.g., logiséigres-
sion and k-means clustering through Spark [64].

Besides the match between the target applications and tiieech
of programming model, another important issue tends to &eath
programmer’s expertise. In this respect, we argue that gsRda
duce has been gaining great popularity in recent years, reany
entists are now well-trained for writing MapReduce-stybele for
scientific analytics [7, 29, 32, 40, 49, 51, 59, 68]. Therefan in-

situ MapReduce-like framework can be a promising approach t

improve both productivity and maintainability of sciertifinalyt-
ics.

2.3 Challenges

We next discuss the the challenges of bridging the gap betmee
situ scientific analytics and MapReduce, which we summagze
four mismatches

2.3.1 Data Loading Mismatch
As the name ‘in-situ’ implies, the downstream analyticsgpamn is
required to take the input directly from (distributed) meynather

than from a file system, as soon as the simulated data become

available. However, existing MapReduce implementatioesnat
designed for such a scenario. To further elaborate on tiésload-
ing mismatch, we first categorize all the MapReduce implgaien
tions into four types according to the data loading meclmnis

1. Loading Data from Distributed File Systems A prominent

example is Hadoop, as well as its variants like M3R [43] and
SciHadoop [7], which load data from Hadoop Distributed File

totypes like Phoenix [38], Phoenix++ [46], and MATE [18]nca
load data from memory. However, these prototypes are cesdri

to shared-memory environment, and hence currently theyare
available for distributed computing.

4. Loading Data from a Data Stream Though MapReduce was

originally designed for batch processing, systems like H&)P
M3 [5], and iIMR [30] have focused on stream processing.

Clearly, the first two categories, where data is loaded fréersfis-
tems cannot support in-situ analytics. Similarly, the dhitass
lacks native support for global synchronization requinediidis-
tributed environment. The fourth group seems more suitase
one might consider the possibility of wrapping simulatianput as

a data stream. However, this approach still imposes sevbsth-
cles. First, as data is simulated in the form of potentiatgé time-
steps, it is simply unnatural to cast time-steps into a daas.
Such casting often not only requires nontrivial extra oeeadh but
also results in periodical stream spiking that can sevetetrade
the performance of stream processing, due to the suddesmlarri
of large volumes of simulated data. Second, since only desing
pass can be allowed over data stream, such casting alsotheses
capability of iterative processing, which can be requirgdrany
analytics programs, e.g., regression and clustering.

However, among all the MapReduce implementations we have ex
amined, we find Spark [64] as an exception here. Its inputldgta
out is defined as Resilient Distributed Dataset (RDD) [63jjalu

can be derived from all the above data source options. Howev-
er, Spark still has functionality and performance limias, which
will be demonstrated through a series of experiments wertépo
Section 5.

2.3.2 Programming View Mismatch

A critical gap between scientific simulation and MapRedsaiused
by different programming views. On one hand, simulatioesusu-
ally implemented in MPI (or a PGAS language) that is suitdbte
distributed memory environments (possibly in conjunctwaith a
shared memory API like OpenMP/OpenCL). With these lowdleve
parallel programming libraries, the programmers expli@kpress
parallelism in gparallel programming viewi.e., all the paralleliza-

gion details like data partitioning, message passing, andtso-

hization, must be manually handled. On the other hand, the si
plified interface of MapReduce presentsegjuential programming
view, which hides all the parallelization complexities. In such
sequential programming view, all parallelization detaite trans-
parent to the programmers. Thus, traditional MapReducdeimp
mentations cannot explicitly take partitioned simulat@mrnput as
the input, or launch the execution of analytics from an SPMD r
gion. Without any change at the downstream MapReduce $ige, t
mismatch cannot be addressed in a realistic way.



For example, one might consider rewriting all the simulatiode
based on MapReduce. This option is clearly impractical ddeur
obstacles. First, scientists not only spend many years dmgyr
debugging, and tuning existing simulation programs, bosépro-
grams also have long lifetimes. Second, simulation prograre
mostly written in Fortran or C/C++, and translating thenoiatpro-
gramming language like Java or Scala that is used by MapReduc
will likely result in a large performance loss. Third, almha# sim-
ulation programs require point-to-point data exchangeveen dif-
ferent partitions, a pattern that does not match MapRediasly,
simulation programs manipulate array slabs and need to hesaw
of element positional information, whereas conventionapMe-
duce is designed to process lines of record and does notrypeese
any record positional information. Yet another possipifitight be

to gather all partitioned simulated data on a single compote
and feed it to MapReduce. This option is also clearly praivily
expensive.

An elegant option will be to develop a new MapReduce implemen
tation, which can presenttgybrid programming viewParticularly,
at the beginning, a parallel programming view should begtesd,
to allow the programmers to be aware of all the partitionéduthe
parallel execution. After the partitioned data are inpugequential
programming view should follow, so parallelism details laidden.

2.3.3 Memory Constraint Mismatch

As simulation programs normally execute with problem sired
require all or almost all available main memory on each ntiuke,
in-situ analytics program can only take a very small amount of
memory. However, nearly all existing MapReduce implementa
tions are memory-intensive, and most are even disk-inten3ihis

is primarily because in the mapping phase, each elemeritgésu
intermediate data in the form of one or more key-value pairsch

can have an even greater size than the original input datae-Mo
over, the subsequent operations like sorting, shufflind, gnoup-

ing only reorganize intermediate data, while not reducisgize.
Thus, the memory consumption cannot be decreased untikcthe a
tual reduce operation is executed. Note that although a r@nb
function at the mapper side can significantly reduce thefize-
termediate data in the shuffling phase, it will not help redtiee

ing mismatch, Smart supports processing data from memary ge
erated by the simulation program — and in one of the in-sitdeso
(time sharing, does so without requiring an extra data copy; 2)
to address the programming view mismatch, Smart offéngtaid
programming view- this exposes the data partitions to the analyt-
ics while launching the data processing, and can still hialp
lelism during the execution; 3) to address the memory caimtr
mismatch, Smart achieves high memory efficiency by modifyin
the original MapReduce API (while still keeping programmiet-
fort very low), and more specifically, avoids the large numbk
key value pairs or the need for shuffling; and 4) to addresgiire
gramming language mismatch, Smart is implemented in C+nl1,
conjunction with OpenMP and MPI.

3.1 System Overview

Scientific Runtime
Simulator System

Simulation Splitting

User
Program

Reduction Combination

Scheduling

"Reduction
Map /

Figure 2: System Overview of Smart

Figure 2 gives an overview of the execution flow of a typical ap
plication using Smart in a distributed environment. Figiten a
simulation program, each compute node generates a daitiopart

at each time-step. Instead of the data being output to tte tthis
memory resident data partitions are immediately takenambut

by the downstream Smart analytics job(s). Since the datéipas

are generated from the SPMD region of the simulation program
the Smart jobs are also launched from the same code region. Un
like most distributed data processing systems, Smart qactt)i

peak memory consumption in the mapping phase. The memory expose these partitions to the subsequent processingr ttim

constraint mismatch cannot be addressed unless we redésign
MapReduce execution flow — particularly, we need to avoidrthe
termediate key-value pairs.

2.3.4 Programming Language Mismatch

The last mismatch is from the programming languages thatsee

to implement simulation and analytics programs with MapkRed
On one hand, almost all the HPC simulations in use are written
Fortran or C/C++, and it is impractical to rewrite simulaicode

in other programming languages like Java or Scala. On ther oth

hand, both Hadoop and Spark, which are the most widely adopt-

ed MapReduce implementations (though Spark also provites o
functionality), cannot natively support Fortran or C/C+##though
this mismatch can be alleviated by using alternate C/C+edas
MapReduce implementations [14, 34,37, 38], these systesnmsoa
widely adopted.

3. SYSTEM DESIGN

In this section, we discuss the design and implementatioouof
system. Overall, Smart design addresses all the challenget-
scribed in the last section, specifically: 1) to address #ia tbad-

involve any explicit data partitioning among the computédem

Next, the Smart runtime scheduler processes partitionedudiack
by block. For each data block, the Smart runtime schedulealeq
ly divides it into multiplesplits, where each split is assigned to a
thread for processing. Additionally, Smart binds eachatiro a
specific CPU core to maximize the performance.

In processing elements within a split, there are two key atjans,
reductionandcombination which are carried out on two core map
structuresreduction mapand combination maprespectively. To
support these operations, the programmers need to defétrie-
tion object which represents the data structure of value in the key-
value pairs of the two maps. This data structure maintaiesath
cumulated (or reduced) value across all key-value pairshiee
the same key. In the reduction operation, a key is first génera
ed for each element in the split. With this key, the runtimgtne
locates a reduction object in the reduction map, and therdhe
responding element is accumulated on this reduction abjethe
combination process, all the reduction maps are combintedain
single combination map locally, and then all the combinmatitaps

on each node are further merged on the master node.



Finally, as the parallel code converges, the final outputhEre-
trieved in sequential code region. Thus, a sequential progring
view is presented to the user. Alternatively in many casesravh
the in-situ analytics tasks are deployed as a MapReducdingpe
some preprocessing steps like smoothing, filtering, andjasiza-
tion, only have a local output on each partition. For thisecdry
turning off the global combination process, the user caienat the
output directly in the parallel code region, and then feedahtput
to the next Smart job.

The above execution flow modifies the original MapReduce pro-
cessing, but it is also the key to the high memory efficienc-of
mart. Specifically, explicit declaration of the reductidsjext elim-
inates the shuffling phase of MapReduce. In analytics proghbe-
sides self-defined reduction object, both reduction anchiation
operations can be customized via a simplified API. The spsaifi
API through examples later in Section 3.4. However, the lagtp
is that besides the declaration of reduction object, thgnammming
effort is not any higher than the one involved in using theioal
MapReduce API — since this API does not involve any parabeli
tion detail, the programmers only need to write sequentalec
leading to a good programmability like the conventional Rap
duce.

3.2 Two In-Situ Modes

To maximize the performance in different scenarios, outesys
provides two in-situ modestime sharingandspace sharingMore
specifically, we observe that: 1) for certain simulationd/anar-
chitectures, memory can be a significant constraint, and w&t m
avoid unnecessary data copying, and 2) in many-core acthits,
simulations may not be able to use all available cores éffdgt
and dedicating a certain number of cores for data analytinshe
feasible and desirable. The two situations described afwehich
may not necessarily be exclusive), lead to tinge sharingands-
pace sharingnodes.
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Time Sharing Mode: Time sharing mode aims to minimize the
memory consumption of analytics, by avoiding extra datayaufp
simulation output. Note that although the memory copy fitiel
likely not an expensive operation, it can increase the ro&hory
requirements, which can lead to performance degradatioertain
cases.

As shown in Figure 3, to avoid an extra data copy, Smart setsch
pointer on the memory space corresponding to the output from a
particular time-step (when the data is ready). Thus, thia dan

be now shared by both simulation and analytics programs. -How
ever, because this memory space is subject to being oveEwhy

the simulation program, the analytics logic must execuferkahe
simulation resumes. As a result, in this mode simulation amet
Iytics run in turns, and each makes full use of all the coresaah
node (and hence the name time-sharing).

Space Sharing Mode:Consider a cluster where every node is an
Intel Xeon Phi. Since each coprocessor has a much largererumb
of cores than the CPU, a simulation program written for adzah
multi-core cluster is unlikely to use all cores of the Xeon €&ffec-
tively. In this case, instead of stopping the progress ofiation
periodically and performing the analytics, one can easdiglicate

a certain number of the available cores for the analytics.reMo
specifically, all the cores are divided into two separateugso—
one is specifically used for simulation, and the other ischtéid to
analytics. In this mode, besides the parallelism of multeading

as well as the parallelism on multiple nodes, another tegétpar-
allelism is placed on top of these two parallelism levels.

As shown in Figure 4, Smart maintaingiacular bufferinternally,

in which each cell can allocate memory on demand and be used fo
caching the output from a time-step. In this mode, one caw vie
simulation program and Smart as the producer and the comsume
respectively. Once a time-step’s output is generatedeittrcular
buffer is not full, then this data can be fed to the Smart naddire

by copying it to an empty cell. Otherwise, simulation prognaill

be blocked until a cell in circular buffer becomes available

3.3 Launching Smart and the API Provided
by the Runtime

Smart is written in C++11, using OpenMP and MPI to achieve par
allelism and to also be compatible with a scientific simolaten-
vironment. Thus, launching Smart does not require insigbiddi-
tional libraries (e.g., HDFS). Now we show how to launch Strirar
two different in-situ analytics modes. As summarized inléah

a set of functions are provided by the runtime, which are 5imp
invoked in the application code to initialize the system aod
the analytics. These functions are transparent to the pnogers.
Specifically, functionsl - 4 in Table 1 are used in both modés,
and6 are used in time sharing mode, and 9 are used in space
sharing mode.

Listing 1: Launching Smart in Time Sharing Mode

1| void sinulate(Qut* out, size_t out_len, const Paran&
p) {

2 /* Each process sinulates an output partition of
data type In and length in_len. */

3 /1 Launch Smart after simulation in the parallel
code region.

4 SchedAr gs args(numthreads, chunk_size,
extra_data, num.iters);

5 uni que_ptr<Schedul er<In, Qut>> smart(new
Deri vedSchedul er<In, Qut>(args));

6 smart->run(partition, in_len, out, out_len);

7|}

Launching Smart in Time Sharing Mode: A distinguishing fea-
ture of Smart is theease of use In time sharing mode, Smart
can minimize the modification of the original simulation eodhs
demonstrated in Listing 1, to run Smart in this mode, onlyngdi
(lines4 - 6) need to be added to the simulation program.

The example code shows the execution of processing a singge t
step. After each data partition is simulated given a setofition
parameterg (line 2), line 4 constructs a scheduler argumenys,
which specifies the number of threads per proeess._threads,

the size of a unit chunk (i.e., unit elemerf)unk_size, the ex-

tra data for analyticextra_data, and the number of iterations
num_iters. To maximize the analytics performaneeaym_threads
should be equal to the number of threads used for simulatiamk_size



Table 1: Descriptions of the Functions in the System API

Functions Provided by the Runtime

1) Sched Args(int num_threads, size_t chunk_size, const void x extra_data, int num_iters)
Initializes the Smart scheduler argument by specifyingitioéthreads, the size of a unit chunk, the extra data, and tidétérations

2) explicit Scheduler(const SchedArgs& args)
Initializes the Smart runtime system

3) void set_global_combination(bool flag)
Enable or disable global combination, which is enabled bsude

Retrieves the combination map

4) const map<int, unique_ptr<RedObj>>& get_combination_map() const

5) void run(const In * in, size_t in_len, Out * out, size_t out_len)
Runs the analytics by generating a single key given a uniticiutime sharing mode

6) void run2(const In x in, size_t in_len, Out * out, size_t out_len)
Runs the analytics by generating multiple keys given a unih& in time sharing mode

7)void feed(const In * in, size_t in_len)
Feeds an input in space sharing mode

8) void run(Out * out, size_t out_len)

Runs the analytics by generating a single key given a unitkuspace sharing mode

9) void run2(Out * out, size_t out_len)

Runs the analytics by generating multiple keys given a unin& in space sharing mode

Functions Implemented by the User

1) virtual int gen_key(const Chunk& chunk, const In x data, const map<int, unique_ptr<RedObj>>& com_map) const
Generates a single key given the unit chunk (and combinatiamn if necessary)

constmap<int, unique_ptr<RedObj>>& com_map) const

2) virtual void gen_keys(const Chunk& chunk, const In * data, vector<int>& keys,

Generates multiple keys given the unit chunk (and comhonatiap if necessary)

Accumulates the unit chunk on a reduction object

3) virtual void accumulate(const Chunk& chunk, const In x data, unique_ptr<RedObj>& red_obj)

=0

4) virtual void merge(const RedObj& red_obj, unique_ptr<RedObj>& com_obj) = 0
Merges the first reduction object into the second reductiaa, i.e., a combination object

5) virtual void process_extra_data(const void x extra_data, map<int, unique_ptr<RedObj>>& com_map)
Processes the extra input data to help initialize the coatioin map if necessary

6) virtual void post_combine(map<int, unique_ptr<RedObj>>& com_map)
Performs post-combination processing and update the catitn map if necessary

Converts a reduction object to an output result if necessary

7) virtual void convert(const RedObj& red_obj, Out * out) const

is the size of processing unit, and it can often be viewed as th
length offeature vectoiin analytics applicationsextra_data is
used when some additional input is required, e.qg., theairktcen-
troids are required in k-means clusterimgum_iters can be speci-
fied for iterative processing. By defaultytra_data andnum_iters
are initialized as a null pointer and 1, respectively. Lirenstructs

a derived Smart scheduler instaneeart with the scheduler argu-

mentargs. Note that Smart scheduler class is defined as a template 12

class, and hence Smart can be utilized for taking any arzy &g
input or output, without complicating the application codie line

6, Smart launches analytics by taking the partitioned dathes-

put, and the final result will be output to the given destioatiDur-

ing the entire process, all the parallelization detailstadelen in a
sequential programming view. Note that the definition ofuctibn
object, as well as the derived Smart scheduler class, aterinemnt-

ed in a separate file based on another API set, which does dot ad
any complexity of the original simulation code (see Sec8a}).

Listing 2: Launching Smart in Space Sharing Mode

1| void sinulate(Qut* out,

size_t out_len, const Param&

/+ Initialize both sinulation and Smart. =/
#pragma onp parallel numthreads(2)
#pragma onp single

{

oOouhwN

#pragma onp task // Sinulation task.

7 {
8 onp_set _num t hreads(num si m t hr eads) ;
9 for (int i =0; i < numsteps; ++i) {
10 /* Each process sinulates an out put
partition of length in_len. */

11 smart->feed(partition, in_len);
12 }
13 }
14 #pragmae onp task // Analytics task.

for (int i =0; i < numsteps; ++i)

smart->run(out, out_|en);

17 }
18]}

Launching Smart in Space Sharing Mode: As shown in List-
ing 2, space sharing mode requires more code reorganizagon
time sharing mode, since an extra task-level parallelismitbde
deployed. Particularly, two OpenMP tasks are created foceo
rent execution. After the initialization of both simulati@and S-
mart, one task encapsulates the simulation code and thds ifise
output to Smart (line$ - 13), and the other task runs analytics
(lines14 - 16). The number of threads used for simulation is spec-
ified within the simulation task. and the number of threadsdus
for analytics is specified when Smart is initialized. NotattMPI
codes are hidden in both simulation task and analytics tagkjn
this mode MPI functions may be called concurrently by défer



threads. Thus, to avoid the potential data race, the leviired
support should be upgraded ¥PI_THREAD_MULTIPLEvhen
MPI environment is initialized.

3.4 Data Processing Mechanism and the API

Implemented by the User
Next, we introduce the data processing mechanism, as wéieas
API potentially to be implemented by the programmers, Sjuet
an application. This set of API is used for implementing the

(orrun2) function in the previous API set, and the same implemen-

tation can be used for both in-situ modes, as well as offlime pr
cessing. This API set mainly includes three functiorger_keyor
gen_keysaccumulateandmerge gen_keyor gen_keysas well as
accumulateare invoked in the reduction phase, andrgeis called

in the combination phase. Particularly, then function invokes

gen_keyto generate a single key given a unit chunk for most ap-

plications, andun2 function callsgen_keygsimilar to theflatmap
function in Scala) to generate multiple keys given a unitnéhfor
other analytics such as window-based applications [57]addi-
tion, the programmers need to define a specialized reduckijmct
as a subclass of the interface cl&edOb)j

Algorithm 1: run(const In*in, size_tin_len, Out* out, Size_t
out_len)

1: process_extra_dataftra_data_, combination_map_) {* Process
the extra data if needed *}

2: for each iterationiter do

3. if iter > 1then

4 Distribute the global combination map to each local comtxma

map

5. endif

6: Distribute the local combination map to each reduction map

7.

8

9

for each processing unithunk € in do
key < gen_keythunk, data_, combination_map_)
: accumulatethunk, data_, reduction_map_[key])
10: end for {* Reduction *}
11: for each(key, red_obj) € reduction_map_do

12: if key exists incombination_map_then

13: mergeted_obj, combination_map_[key])
14: else

15: movered_obj to combination_map_[key]
16: end if

17: end for {* Local combination and global combination *}

18: post_combinefombination_map_) {* Perform post-combine
operations if needed *}

19: end for

20: if out # NULL andout_len > 0then

21: for each(key, red_obj) € combination_map_do

22: convertfed_obj, out[key])

23:  end for

24: end if {* Output results from the combination map *}

Therun function in Algorithm 1 is used in time sharing mode, and

it shows the data processing mechanism in Smart. The space sh

ing mode uses the same mechanism, with a minor differendein t
function signature. In the reduction phase, as a data block-i
vided into multiple splits, each thread processes a daiacépink
by chunk. In line8, a key is generated for the unit element. Line
9 accumulates the derived data from the element intedaction

object which can be located in the reduction map by the generat-

ed key. The reduction object is updated in place — no interaed
key-value pair is emitted or stored, and thus, no shufflingsghis
needed during the reduction. This is a key difference batvoes
alternate APl and the conventional MapReduce paradigm.

Lines11 - 17 show the combination phase consisting of two steps
—local combinationandglobal combination In the local combi-
nation, the reduction maps maintained by all the threads mo-a
cess are combined into a local combination map. Partigu idnd
two reduction objects associated with the same key are ménge
to one. In the global combination, the local combination snap

all compute nodes are further combined into a global contioina
map that holds the global result. This global combinatimetages
the same merge operation used for the local combinatiore 18n
can update reduction objects after the combination phaseafth
iteration, e.g., computing average based on sum and counatllys
lines 20 - 23 convert all the reduction objects in the global combi-
nation map into the desired output.

Moreover, theprocess_extra_datandpost_combindunctions are
often used for the analytics involving iterative procegsifartic-
ularly, the process_extra_datéunction can help initialize combi-
nation map with the extra input. For example, k-means ctirgje
requires some initial centroids as the extra data besidemput
points, and those centroids can be used to initialize thectésh
objects that represent clusters. After the combination meapi-
tialized, it is then distributed to each reduction map @iBe 6).
After the combination phase, thmst_combindunction can help
update reduction objects. For instance, two fisldsiandsizein a
reduction object can be used to compute dkieragein this func-
tion. Additionally, for non-iterative applications, thea functions
actually involve no computation by default, leading to anpgm
initial combination map. Finally, all the reduction objedh the
combination map are converted into the desired output,rdttyp
to theconvertfunction.

Additionally, the only difference between tlmen andrun2 func-
tions is in lines8 and9. In therun2 function, given a chunk, mul-
tiple keys will be generated, and the chunk will be accunadan
a loop that iterates over all the generated keys.

3.5 Smart Analytics Examples

We now illustrate the use of our system API by creating twaexa
ple applicationshistogramandk-means clusteringas an instance
of non-iterative and iterative application, respectivélpte that the
application-specific analytics code is written in a sepfié, and
it does not differ in different in-situ modes.

Listing 3: Histogram as a Non-Iterative Example Applicatio

1| Derive a reduction object:

2| struct Bucket : public RedOoj {

3 size_t count = O;

4|1;

5 | Derive a system scheduler:

6| tenpl ate <class I n>

7 | class Histogram: public Schedul er<in, size_t> {

8 /1 Conpute the bucket ID as the key.

9 int gen_key(const Chunk& chunk, const |n* data,
const map<int, uni que_ptr<RedObj >>&
conbi nati on_map) const override {

10 /'l Each chunk has a single elenent.

11 return (dataf[chunk.start] - MN)) /

BUCKET_W DTH,

12

13 /1 Accunul ate chunk on red_obj.

14 voi d accunul at e(const Chunk& chunk, const |n*
data, unique_ptr<RedObj>& red_obj) override
{

15 if (red_obj == nullptr) red_obj.reset(new

Bucket) ;

16 red_obj - >count ++;

17 }

18 /1 Merge red_obj into com_obj.




19 voi d nerge(const RedCbj & red_obj, unique_ptr<
RedObj >& com obj) override {

20 com obj - >count += red_obj->count;

21

22|},

As the first example, Listing 3 shows the pseudo code of edgiiawv
histogram construction. Two major steps are taken. To bedh

the user needs to define a derived reduction object claskisiex-
ample, the clas8ucket represents a histogram bucket, consisting
of a single fieldcount.

In the second step, a derived system scheduler class sheule-b
fined, e.g.,Histogram here. Note that to facilitate the manipu-
lation on the datasets of different types, in our system réveld
class can be defined as either a template class or a clasficspeci
to an input and/or output array type. For this kind of nomatize
application, the user usually only needs to implement tfuee-
tions —gen_keyaccumulate andmerge First, thegen_keyfunc-

tion computes the bucket ID based on the element value imphs i
datachunk, and the bucket ID serves as the returned key. For ex-
ample, if the element value is located within the value raofgbe

first bucket, then 0 will be returned. For simplicity, we assuthat

the minimum element value can be taken as priori knowleddpe or
retrieved by an earlier Smart analytics job. Note that is #ppli-
cation, since each element should be examined individuadigh
chunk as a processing unit only contains a single array element.
Next in the reduction phase, tleecumulatefunction accumulates
count of the bucket that corresponds to the key returned by the
gen_key function. Lastly, given two reduction objects, where the
first onered_obj is from the reduction map, and the second one
com_obj is from the combination map, theergefunction merges
count oncom_obj in the combination phase.

Listing 4: K-Means Clustering as an Iterative Example Aggiion

1 | Derive a reduction object:
2| tenplate <class T>
3| struct dusterj<T>: public RedObj {
4 T centroi d[ NUM DI M5 ;
5 T sun{ NUM_DI MS] ;
6 size_t size = 0;
7 voi d update(); // Update centroid by sum and
size, which are then reset.
811}
9 | Derive a system scheduler:
10 | tenpl ate <class T>
11| cl ass KMeans : public Schedul er<T, T+> {
12 /1 Conpute the ID of the nearest centroid as the
key.
13 int gen_key(const Chunké& chunk, const T* data,
const map<i nt, uni que_ptr<RedCbj >>&
conbi nati on_map) const override {
14 [+ Let C be the a set of centroids fromthe
reduction objects in combination_map. */
15 /* Find the centroid ¢ nearest to the point
represented by chunk fromC. */
16 /* Return the key associated with cin
combination_map. */
17
18 /1 Accunul ate chunk on sum and size of red_obj.
19 voi d accunul at e(const Chunk& chunk, const Tx data
, uni que_ptr<RedObj >& red_obj) override {
20 red_obj - >sum += chunk; // Vector addition.
21 red_obj - >si ze++;
22
23 /'l Merge red_obj into com_obj on sum and size.
24 voi d nerge(const RedCbj & red_obj, unique_ptr<
RedObj >& com obj) override {
25 com obj - >sum += red_obj->sum // Vector
addi tion.
26 com obj - >si ze += red_obj->si ze;
27 }

28 /'l Process extra_data to set up the initial
centroids in combination_map.

29 voi d process_extra_data(const void+ extra_data,
map<i nt, uni que_ptr<RedObj >>&
conbi nati on_map) override {

30 |+ Transform extra_data into a set of cluster

objects C. */

31 /* Load C into combination_map. */

32

33 /1 Update the clusters for the next iteration.

34 voi d post_conbi ne} (map<i nt, uni que_ptr<RedCbj >>&
conbi nati on_map) override {

35 for (auto& pair : conbination_map) {

36 Redbj * red_obj = pair->second.get();

37 red_obj - >update();

38 }

39

40 /1 Extract the centroid from red_obj as the
out put .

41 voi d convert(const RedObj & red_obj, T+* out)
const override {

42 mencpy(*out, red_obj->centroid, sizeof(T) =*

NUM_DI MVS) ;
43 }
441 };

As shown by Listing 4, the second example is k-means cluster-
ing, which represents a set of applications involving tigeapro-
cessing. First of all, the clagsSlusterObj is defined as a derived
reduction object class, indicating a cluster in a multi-eirsional
space. In this classentroid, sum andsize represent the centroid
coordinate, the sum of the distances from each point to thieaid,

and the number of points in the cluster, respectively.

Next, K Means is defined as a derived system scheduler class.
For this kind of iterative application, usually most virtdfanc-
tions should be overwritten. First, given a point represeérty
the input datachunk, the gen_keyfunction finds the closest cen-
troid and returns the centroid ID as the key. Second, sintoléne
previous example, thaccumulatefunction accumulates the two
distributive (or associative and commutative) fiekdsn andsize
on the reduction object in reduction map, and thergefunction
accumulates reduction objects in combination map. Negtpib-
cess_extra_datéunction initializes the combination map with the
extra data that indicates some initial centroids, angptis¢_combine
function prepares for the next iteration, by updating adl ¢ctuster-
s. Specifically, the centroid coordinates are computeskby and
size, which are then reset as zeros. Lastly, domvertfunction
extracts the centroid coordinate from each reduction olgsan
output result. To make use of this function, a restrictiotné, the
integer key should start from 0.

From the above two examples, we can see that Smart provides a
sequential programming view for application developmant the

user only needs to write some sequential code based on the de-
clared reduction object. Thus, like traditional MapRedtregne-
work, our system makes parallelism entirely transparethéaap-
plication code. Note that unlike a MapReduce job optimizgd b

a combiner function, our application code does not emit ay k
value pair as intermediate result.

4., SYSTEM OPTIMIZATION FOR WINDOW-
BASED ANALYTICS

4.1 Motivation

In practice, simulation output may contain some short-teotatil-

ity or undesired fine-scale structures. In such cases,nt®itant
to perform analytics for specific ranges of time-steps, sdéerred



to assliding windows In some other cases, in-situ analytics can
involve certain preprocessing steps like denoising [1dsmooth-
ing [16, 33], which also execute on a sliding window basis.im-s
ple example of such window-based analyticsrieving average
where the average of the elements within every window srapsh
is computed. A critical challenge in the implementation otls
window-based analytics is that digh memory consumptioras
we will elaborate on the space complexity below.

The space complexity of window-based analytics impleng:hie
using MapReduce is determined by two factors, whichlaeemax-
imal number of key-value paiendthe size of key-value paiFor-
mally, let the input size and window size BeandW, respectively.

In terms of the first factor, since each input element cooedp to
an output result, there are totally output results, which are trans-
formed from N key-value pairs after reduction. Moreover, since
each element typically appedrs times in the sliding windowi?/’
key-value pairs are generated by each element. Thus, inecon
tional MapReduce implementation, totally x W key-value pairs
with N distinct keys are generated (at least in the mapping phase).
Smart can reduce the maximal number of key-value paird’to
because each distinct key corresponds to a single redusiiewct.
On the other hand, the size of key-value pair or reductioeaibj
is dependent on the specific application, and it is typicadisied
from ©(1) to ©(W). For example, since averagesigebraicand
can be computed by sum and count, the size of reduction objec-
t for moving average can be on#y(1), while median isholistic
and can only be computed by preserving all elements, theo§ize
reduction object for moving median &(W). Another example is
K nearest neighbor smoother, where the size of reductiorciolsje
O(K),1<K<W.

Overall, given a window-based application implemented inag,
the space complexity i®(N x R), where N and R denote the
maximal number of reduction objects and the size of redocilp
ject, respectively. Irrespective of the application, sintcan often
be too large to meet the memory constraints of in-situ siesar
it is very desirable to reduce the space complexity, esjedsn
reducing the maximal number of reduction objects.

4.2 Optimization: Early Emission of Reduc-
tion Objects
Algorithm 2: reduce(Splitsplit)

1: for each datahunk € split do
for each keyk generated byhunk do
Let the reduction objeated_obj bereduction_map_[key]
accumulatethunk, data_, red_obj)
if red_obj.trigger() then
convertfed_obj, out_[key])
reduction_map_.erasefey)
end if {* Optimization for early emission *}
end for
10: end for

3
4
5:
6:
7:
8
9

We develop the optimization based on the following obsémaat
For most elements, all the associated window snapshotsnare e
tirely covered by their respective local split of data. Aseautt,
most reduction object values have been finalized in in thea(jo
reduction phase, and they will not be involved in the subsegu

t combination phase. By capturing this observation, wegiesi
mechanism that can suppaarly emission of reduction objedts

the reduction phase, which is in contrast to the originalgtethat
holds all the reduction objects until the combination presgs.

Our optimization is implemented as follows. First, we ext¢he
reduction object class by addingtagger function This trigger
evaluates a self-definegmission conditionand determines if the
reduction object should be emitted early from the reducti@p.
By default, the function returnfglse and hence no early emission
is triggered. Second, we extend the implementation of redys
eration, which is an internal step in Smart scheduling. £me 7

in Algorithm 2 show the extension. Once a data element is-accu
mulated on a reduction object (ling, the added trigger function
evaluates a user-defined emission condition (finelf this condi-
tion is satisfied, the reduction object will be immediatetyreerted
into an output result, and then be erased from the reductiam m
(lines6 and7). With such an optimization, the maximal number of
reduction objects need to be maintained is reduced fronmihe
data sizeo thewindow size

Listing 5: Moving Average as a Window-Based Example Aptitina

1| Derive a reduction object:
2 | struct W nQObj public RedObj ({
3 doubl e sum = 0;
4 size_t count = 0;
5 bool trigger() const override {
6 return count == WN_SIZE;
7 }
811}
9 | Derive a system scheduler:
10| tenpl ate <class In>
11 | cl ass Movi ngAverage : public Schedul er<in, double> {
12 /1 Take all the el enment positions covered by the
wi ndow as the keys.
13 voi d gen_keys(const Chunk& chunk, const |n* data,
vector <i nt >& keys, const nap<int,
uni que_pt r <RedCbj >>& conbi nati on_map) const
override {
14 /'l Each chunk has a single elenent, which is
the center of the w ndow.
15 for (int i = max(chunk.start - WN_SIZE / 2,
0); i <= mn(chunk.start + WN_SIZE / 2,
total _len_); ++i) {
16 keys. enpl ace_back(i);
17 }
18
19 /'l Accunul ate chunk on red_obj.
20 voi d accunul at e(const Chunk& chunk, const |nx
data, unique_ptr<RedObj>& red_obj) override
{
21 if (red_obj == nullptr) red_obj.reset(new
WnQoj);
22 red_obj - >sum += dat a[ chunk. start];
23 red_obj - >count ++;
24
25 /1 Merge red_obj into com_obj.
26 voi d nerge(const RedObj & red_obj, unique_ptr<
RedObj >& com obj) override {
27 com obj - >sum += red_obj - >sum
28 com obj - >count += red_obj->count;
29
30 /1 Transform red_obj into average as the output.
31 voi d convert(const RedObj & red_obj, doubl ex out)
const override {
32 *out = red_obj->sum/ red_obj->count;
33 }
341}

To support such an optimization, the user only needs to aiterw
the trigger function when deriving the reduction objecsslaList-

ing 5 shows the implementation of moving average as a window-
based application example. In this example, the reductimpaco
counts the number of elements covered by a window, and the emi
sion condition can be whether the count is equal to the wirgloe:
Note that since each input element contributes to multiprelow
shapshots, here we use #wen_keys function instead ofjen_key

in Table 1, to map each element to multiple keys. It should be



noted that, this optimization is not only specific to in-sitindow-
based analytics, but also can be broadly applied to othdicapp
tions, even for offline analytics [28, 31, 41, 42, 52, 53, 55,@l].
A simple example can be matrix multiplication, where the bem
of element-wise multiplications that contribute to a sengutput
element is a fixed number.

5. EXPERIMENTAL RESULTS

In this section, we evaluate both efficiency and scalabdftpur
system on both multi-core and many-core clusters. Firstcove-
pare with Spark [64] — a popular MapReduce implementatidrilév
also providing other functionality), which has been showmut-
perform Hadoop by up to 100x. Second, we compare with analyt-
ics programs written with lower-level APIs (MPI| and OpenM®)
measure both the programmability and overheads of our mddl
ware approach. Third, we evaluate the scalability of Snmatha
number of nodes and cores is increased. Next, we focus om-unde
standing and comparing performance for time sharing andespa
sharing modes. Lastly, we evaluate the effect of the opttion

for window-based analytics, by comparing the performangé w
an implementation that disables the trigger mechanism.

5.1 Applications and Environmental Setup

We experimented with nine applications that represent sfgrel
ent classes of in-situ analytics — these classes were pidyide-
scribed as in-situ use cases from the literature in Secti®dnThe
classes of analytics and specific applications arezisi)alization
grid aggregation[57] groups the elements within a grid into a s-
ingle element for multi-resolution visualization, &jatistical an-
alytics histogramrenders data distribution with equi-width buck-
ets, 3)similarity analytics mutual informationreflects the sim-
ilarity or correlation between two variables, #ature analytics

logistic regressiormeasures the relationship between a dependent

variable and multiple independent variables;ch)stering analyt-
ics: k-meandracks the movement of centroids in different time-
steps [67]; and 6window-based analyticsmoving averageand
moving mediartompute average and median in a sliding window,
respectivelyGaussian kernel density estimatiplots data density
with the Gaussian kernel, ar®hvitzky-Golay filtef39] is a well-
known smoothing filter.

The above analytics programs can be applied on a varietyflat
tion programs. However, from a performance view-pointydnio
aspects of the simulation program are important for us — ta@m

ry requirements for the simulation, and relative to it, theoant of
data that is either output or needs to be analyzed every teye-
Thus, we choose two open-source simulation programs that ha
very different amounts of output. Specifically, for evempéi-step

in our experimental setup, Heat3D [2] generates large vetuof

ter has an Intel Xeon Phi SE10P coprocessor, with 61 cores.and
clock frequency of 1.1 GHz (488 cores in total). The memozgsi
of coprocessor is 8 GB.

5.2 Performance Comparison with Spark
Although Spark can directly load data from memory and heace ¢
address the data loading mismatch, it cannot overcome ter ot
three mismatches mentioned in Section 2.3. Thus, to make a fa
comparison, we let Spark bypass all the other mismatchésthet
following setup: 1) to bypass the programming view mismatch
the simulation program was replaced by a simple emulatore- a s
quential program that outputs double precision array ehtsigat
follow a normal distribution, and in addition, the experimgwere
only conducted on a single node with 8 cores, 2) the memory con
straint mismatch was also addressed by the use of the emulato
which hardly consumed any extra memory, and thus there was no
tight memory bound for the analytics programs; and 3) to bgpa
the programming language mismatch, the emulator used bik Spa
was written in Java. 40 GB data was output from the simulation
over 800 time-steps, and the number of threads used fortazaly
was varied from 1 to 8. The version of Spark used was 1.1.1.

We used three applications for comparison, with the folfayypa-
rameters — 1)ogistic regressionthe number of iterations and the
number of dimensions were 10 and 15, respectivelyk-B)eans

the number of centroids, the number of iterations, and tmebeu

of dimensions were 8, 10, and 64, respectively; antdifpgram

100 buckets were generated. Particularly, both logisticagsion

and k-means were implemented based on the example codes pro-
vided by Spark. Since the emulation code was not paralttlizere

we only report the computation times of analytics.

The comparison results are shown in Figure 5. Smart can eutpe
form Spark by up to 21x, 62x, and 92x, on logistic regressien,
means, and histogram, respectively. The reason for suctga la
performance difference is three-fold. First, like othergRaduce
implementations, Spark emits massive amounts of interateda-

ta after the map operation, and grouping is required befedaa-
tion. By contrast, Smart performs all reduction in place exfuc-
tion maps, avoids emitting any key-value pairs, and thusy-co
pletely eliminates the need for grouping. Moreover, eveparg
transformation operation makes a new RDD (Resilient Diated
Dataset) [63] due to its immutability. In comparison, all &trop-
erations are carried out on reduction maps and combinatagsm
and these maps can be reused even for iterative processimg. F
ther, Spark serializes RDDs and send them through netwak ev
in local mode, whereas Smart avoids copying any reductigecbb
from reduction map to combination map, by taking advantage o

data, e.g., 400 MB per node, whereas Lulesh [3] has a moderatethe shared-memory environment within each compute node.

amount of output, which is typically smaller than 100 MB orclea
node.

Our experiments were conducted on two different clusteng fiFst
cluster is a more traditional cluster with multi-core nodespecifi-
cally, each node is an Intel(R) Xeon(R) Processor with 4-doa¢
CPUs (8 cores in all). The clock frequency of each core is 2.53

Besides the efficiency advantage, we can also see that Stabass
much better than Spark, at least in the shared-memory emagn-
t. Particularly, Smart can achieve a speedup of 7.95, 7ritll7 96,
by using 8 threads on logistic regression, k-means, anddrist,
respectively. This is because that, Spark can only allontimber
of worker threads to be controlled by the user, while it &illnch-

GHz, and the system has a 12 GB main memory. We experimentes extra threads for other tasks, e.g., communication &mergr

with time sharing mode only on this cluster, as the simutafio-
gram can be expected to scale with all available cores. We hav

user interface. Particularly, we can see that, when 8 wdhkeads
were used for Spark execution, the speedup becomes rélagive

used up to 512 cores (64 nodes).The second cluster has a manymall, because not all 8 cores are being used for computaBgn.

core accelerator on each nodes, and both time sharing aod spa

contrast, Smart does not launch any extra threads, and dhias

sharing modes are used and compared. Each node on this clusis efficiently parallelized on all threads.
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Figure 5: Performance Comparison with Spark

In addition, Smart can also achieve a much higher memoryeaffic

cy than Spark. It turns out that for all the three applicatiocBpark
takes up constantly over 90% of the total memory (12 GB) wdere
the memory consumption of Smart is only 4.3% (528 MB). Since
the time-step size is already 512 MB, the analytics programbsy
Smart actually consumes only around 16 MB memory. Note that
the time-step size is much smaller than the memory capamity,
hence Spark is very unlikely to spill the input to the disk.

5.3 Performance Comparison with Low-level
Analytics Programs
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Figure 6: Performance Comparison with Low-Level Programs

In the second experiment, we compared both the programityabil
and performance of analytics programs written using Snuainst

the ones that were manually implemented in OpenMP and MPI. We
used logistic regression and k-means with the same paresreete

in Section 5.2. 1 TB data were processed on a varying number of
nodes, ranging from 8 to 64.

First, it turns out that Smart is effective in simplifying@ization

development, by saving the efforts on implementing and deimg

low-level parallelization details. Specifically, for k-ames and lo-
gistic regression, 55% and 69%, respectively, of the life3pen-

MP/MPI codes in the low-level implementations are eithémel

nated or converted into sequential code by Smart. Note lieset
low-level codes are usually the most error-prone part ferpio-

grammers.

Second, we will like to understand performance overheads th
arise as well. Figure 6 shows the results. First, we find tratdw-
level codes for k-means can outperform Smart version by 9@¢o
Such performance difference is mainly due to the extra @azh
involved in the global combination of Smart. In the manua} im
plementation, the synchronized data is stored in contigaorays,
and the global synchronization can be done by a single MRi-fun
tion call (MPI_Allreduce). By comparison, Smart storesuetibn

objects in a map structure noncontiguously, and hence aa set
rialization of these objects is required by global comboratNote
that we follow such a design for a better applicability andifig-
ity — the keys do not have to be continuous integers on each,nod
and early emission of reduction objects can be supportecbrise
it turns out that the performance difference on logisticgesgion is
unnoticeable, because only a single key-value pair is raiaietl in
this application and trivial serialization is needed. Gdesince in
practice the total processing cost is mostly dominated bystim-
ulation program, we do not expect noticeable overheads rom
framework over hand-written low-level code.

5.4 Scalability Evaluation

The next set of experiments evaluate the scalability of Snigr
using both Heat3D and Lulesh simulations, and nine analytio-
grams: 1)grid aggregation the grid size was 1,000; Rjistogram
the number of buckets was 1,200;8utual informationthe num-
ber of buckets for each variable was 100, and hence the 2ndiol
space was divided into up to 10,000 cellslabistic regressionthe
number of iterations and the number of dimensions were 3 &nd 1
respectively; 5k-means the number of centroids, the number of
iterations, and the number of dimensions were 8, 10, andsgere
tively; and 6) the four window-based applications, inchgimov-
ing average moving median(Gaussian) kernel density estimatjon
as well asSavitzky-Golay filterthe window sizes were all 25.
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Figure 7: In-Situ Processing Times with Varying # of Nodes on
Heat3D (Using 8 Cores per Node)

First, we evaluate the total processing times on Heat3D gascale
the number of compute nodes from 4 to 32, with 8 threads on each
node being used for both simulation and analytics. 1 TB das w
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Figure 8: In-Situ Processing Times with Varying # of Threads
Lulesh (Using 64 Nodes)

output by Heat3D over 100 time-steps. As Figure 7 shows, Smar
can achieve 93% parallel efficiency on average for all theicgp
tions. Particularly, we can even see that, for some casesevilte
nodes are used, a super linear scalability can be achieveth. 5
extra speedup is caused by the reduction in memory requirtsme
per node as more compute nodes are used.
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Figure 9: Evaluating the Efficiency of Time Sharing Mode

size was varied from 100 to 233, and the corresponding tiey-s

Second, we evaluate the performance of scaling the number ofSiz€ was varied from 1.5 GB to 18.3 GB.

threads on 64 nodes by using Lulesh. Lulesh output 1 TB data
over 93 time-steps. The number of threads used for both aimul
tion and analytics per node was up to 8. Figure 8 shows thétsesu
Smart can achieve 59% and 79% parallel efficiency on average f
the first five applications, and the other four window-basgglia
cations, respectively. The difference in parallel efficieis related

to the nature of these applications. For example, compartdd w
the first five applications, the window-based applicatiomsraore
compute-intensive, and the synchronization overheadghwaiich

less in the total processing cost, leading to a better sitigfab

5.5 Evaluating Memory Efficiency

As shown in Figure 9, we can see that when our system does not
involve any data copy, there can be a notable performanceirap
ment. For Heat3D, with a time-step greater than 1.4 GB, cstesy

can outperform the other implementation by up to 11%. No& th

a time-step of 1.8 GB makes the system reach the memory bound
in our setup, since a time-step of 2 GB can result in a crash. Fo
Lulesh, with an edge size smaller than 220, only a performanc
gain of up to 7% is achieved. This is because the size of steulila
data on each node is only 247 MB, which is very small compared
with the memory capacity (12 GB). However, when the edge size
reaches 233, the memory consumption of the implementation i
volving data copy becomes very close to the physical capaitd

We next demonstrate a key advantage of Smart design (its timehence its processing time increases substantially. Foctse, our

sharing mode implementation) — in-situ analytics can bepsttp

ed evenwithout involving an extra copgf the simulation output.
Many simulation programs practically use almost all avdéamem-

ory on the machine, and unnecessary copying of data candead t
severe performance degradation — this is even more impatan
memory to flop ratio has decreased with many recent systeras. W
evaluate such impact by comparing the performance with afeim
mentation involving data copy.

In this set of experiments, 1 TB data was output by Heat3D on 4

nodes, and by Lulesh on 64 nodes. Logistic regression and mu-

tual information were used as analytics programs on Heat®D a
Lulesh, respectively, with the same parameters as for therex
iments in Section 5.4. To vary the memory consumption in the
simulation program. we varied the time-step size for eagtuls-
tion run as follows. For Heat3D, we could vary the length o€ on
dimension of the 3D problem size, and hence we varied the-time
step size as well as the memory consumption linearly. Raatily,

the time-step size was varied from 0.6 GB to 1.8 GB. For Lylesh

system can achieve a speedup of 5x.

5.6 Comparing Time Sharing and Space Shar-
ing Modes

Recall that in the space sharing mode, both simulation aatyan

ics run concurrently, using two separate groups of coresach e
node. All of our experiments so far have considered the tinae-s
ing mode only. Now we evaluate the efficiency of space sharing
mode, by comparing against the performance in time shariodt m

e, as well as the performance of pure simulation as a baselinz
many-core cluster.

In this set of experiments, 1 TB data was output by Lulesh on 8
Xeon Phi nodes. Since it turns out that the simulation cowld n
benefit from hyperthreading on the coprocessors, we onlg 66e
threads for computation in this mode, and 1 core was resdored
scheduling and communication. Histogram, k-means, andngov
median were used as analytics programs, with the same parame

we could vary the edge size of a 3D array cube simulated on eachters as for the experiments in Section 5.4. Besides timarghar

node, and hence by varying the edge size linearly, we cosldtre
in a cubic growth of memory consumption. Particularly, thige

and ‘simulation-only’ versions, to vary the number of cotsed
for simulation and analytics in space sharing mode, we ugdifi 5
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Figure 10: Evaluating the Efficiency of Space Sharing Mode

ferent versions, in which the number of cores used for sitrmria

was varied from 50 to 10, and the remaining cores were used for

analytics.

The results are shown in Figure 10. Here, #n” denotes a space
sharing scheme with threads for simulation angh threads for
analytics. First, although the best performance in spaeeirsh
mode is achieved by different schemes for different appbos, it
does not incur too much overhead compared with the ‘sinanati
only’ performance, even with a moderate amount of companati
(as shown in Figure 10(c)). Second, the best performances in
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pace sharing mode for k-means and moving median are achieved

by “50_10" and “30_30", and reflect a performance improvemen
t of over the time sharing mode by 10% and 48%, respectively.

This is because space sharing mode can make better use of some

cores, when simulation reaches its scalability bottlendoladdi-
tion, we also notice that not all applications can benefitfigpace
sharing mode — the best performance of histogram in spacmgha
mode (achieved by “50_10") is 4.4% lower than the perforneanc
from the time sharing mode. This is because the synchraoizat
(or message passing) cost in histogram is relatively higegrin
the other two applications, and space sharing mode can arly e
cute the message passing in simulation and analytics ségjien
to avoid the potential data race in MPI, i.e., only a singledd
can call MPI function at a time during concurrent executidhus,
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Figure 11: Evaluating the Effect of Optimization for Window

we conclude that space sharing mode can be advantageousawhen Based Analytics

simulation program does not scale well with increasing neindf
cores, but it is not a good fit for the applications involvingdfuent
synchronization.

5.7 Evaluating the Optimization for Window-

Based Analytics
The last set of experiments evaluate the effect of optinunafor
window-based analytics. Specifically, we compare the dpéh
version against an implementation that does not set a trigge-
tion and hence cannot support early emission of the reductio
ject. In the first experiment, we used Heat3D to simulate 380 G

instance, with such an optimization, it turns out that theximal
number of reduction objects maintained by Smart can be dsetk
by 1,000,000 times for the case of the moving average apiglica
Moreover, a time-step of 1 GB in Heat3D, or an edge size of 800 i
Lulesh, can result in a crash from the implementation wittiba
trigger mechanism, due to the extremely large memory copsum
tion — we have not even reported the results for these twscase

5.8 Discussion
It is worth noting that our system is specifically designedsiden-
tific analytics. Thus, although theyte streandata model in con-

data, and used moving average as the analytics program on 4 nventional MapReduce does not match the array data modeiprev

odes. Similar to the previous experiment, we varied the -Ste@
size from 0.5 to 1 GB in Heat3D, and the window size of moving

lent in scientific analytics [7], our system does not havésumis-
match. In our system, the data chunk for unit processingyeigti

average was 7. In the second experiment, 1 TB data was owtput b preserves array positional information, and hence it capsu

Lulesh, and then analyzed by moving median on 64 nodes. We als
varied the size of simulated data on each node from 5.2 to 186 M

in Lulesh, by varying the edge size of array cube from 60 to, 200
and the window size of moving median was 11.

The results are shown by Figure 11. We can see that the optimiz

tion can lead to a speedup of up to 5.6 and 5.2 in the two experi-

ments, respectively, which is because of the memory effigiefor

ad-hoc structural analytics [57], e.g., grid aggregatiod anov-

ing average. Moreover, we believe our system can well stppor
a variety of scientific analytics, from both applicabilitpdaper-
formance view-points. Unlike the scientific simulationattioften
require point-to-point communication and fail to fit into pRe-
duce, many complex analytics programs can still be expdease
MapReduce jobs or even nuanced MapReduce pipelines (aig., m
tual information). We have also demonstrated the high efiicy



of our system compared with the manual implementationsvin lo
level libraries.

6. RELATED WORK

As recent years have witnessed an increasing performaipcesga
tween 1/0O and compute capabilities, in-situ scientific gied [21,
23,65, 73] has attracted much attention. As we stated indett
the research on in-situ scientific analytics has been méalysed

on two areas -applicationsand platforms In-situ applications
and algorithms have been extensively studied, with workapn t
ics including indexing [20, 23], compression [24, 74], \abna-
tion [19, 62, 72], and other analytics like object tracki®g], fea-
ture extraction [25], and fractal dimension analysis [5QIn the
other hand, in-situ resource scheduling research thatsoffkat-
forms can be classified intime sharingand space sharingcat-
egories. An example of time sharing platform is GoldRusH,[70
which runs analytics on the same simulation cores. Since sim
ulation and analytics are tightly coupled, cycle stealiegdmes
critical for performance optimization. For the case of gpabar-
ing platforms, CPU utilization of simulation and analytae de-
coupled, while the memory bound on analytics still holdsarfx
ples of efforts include Functional Partitioning [26], ahe system-

s Damaris [12] and CoDS [66]. By contrast, our work explores
the opportunities in in-situ scientific analytics at f@gramming
modellevel. Broadly, in-situ applications can benefit from Smart
by adapting the system API and abstracting parallelizatidrile
Smart can be deployed on top of any of the in-situ resourcecsgh
ing platforms.

In a broader context of online resource scheduling platéoram-
other two processing modes have been studied in additiongitu
processing. The first im-transit processing, where by leveraging
extra resources, online analytics can be moved to dedistagihg
nodeghat are different from the nodes where simulation runst- Pla
forms supporting this mode include PreDatA [69], GLEAN [50]
JITStager [4], and NESSIE [35]. Based on the observatioh tha
in-situ and in-transit modes can complement each othersdlce
ond mode is that ohybrid processing. This mode is supported
on many platforms, including ActiveSpaces [10], DataSad¢
FlexIO [71], and others [6]. Our system can be incorporated i
these platforms to support in-transit or hybrid processing

We had earlier compared the limitations of various MapRedoe:
plementations for possible in-situ analytics, and haveresively
compared our work against Spark. In addition, iIMR [30] iscife
ically designed for in-situ log stream processing. To mhetibh-
situ resource constraints, iIMR focuses on lossy processiddoad
shedding. Smart, in comparison, is based on a distinct A&l th
reduces memory requirements. Further, integrating Map&ed
with scientific analytics has been a topic of much interesemné

ly [7,29, 32,40, 49, 51,59, 68]. SciHadoop [7] integratesibtap
with NetCDF library support to allow processing of NetCDF da
ta with MapReduce API. ScIMATE [59] is a MapReduce variant
that can transparently process scientific data in multiplensif-

ic formats. Zhacet al. [68] implement a parallel storage and ac-
cess method for NetCDF data based on MapReduce. The Ke-
pler+Hadoop project [51] integrates MapReduce with Kepidich

is a scientific workflow platform. Himach [49] extends MapRed

to support molecular dynamics trajectory data analysis RRA40]
and KMR [32] are other two MapReduce-based frameworks that
can support scientific analytics in MPI environment. SciéHj{5]
can support querying scientific data like some scientifie datery
processing engines [45,58], and it is built on top of MapRedun

contrast, Smart is designed for in-situ processing, andrdewy-
ly, the focus is on addressing the data loading mismatch,anem
constraint, and other similar issues. Moreover, Smart ionand
to any specific scientific data format, since its input is odered
to be resident in (distributed) memory.

7. CONCLUSIONS

In this paper, we have developed and evaluated a systemphat a
plies MapReduce-style API for developing in-situ analytfro-
grams. Our work has addressed a number of challenges inngreat
data analytics programs from a high-level API that is effitiend
can share resources with an ongoing simulation program.

We have extensively evaluated our framework. Performanoe c
parison with Spark shows that our system can achieve highiesffi

¢y in in-situ analytics, by outperforming Spark by at leasbader

of magnitude. We also show that our middleware does not add
much overhead (typically less than 10%) compared with level
implementations. Moreover, we have demonstrated bothuthe- f
tionality and scalability of our system by running diffeteimula-
tion and analytics programs in different in-situ modes arsters
with multi-core and many-core nodes. We can achieve 93%-para
lel efficiency on average. Finally, we show that our optirtiza

for in-situ window-based analytics can achieve a speedwpab
5.6. Smart is an open-source software, and the source cadeeca
accessed aftt ps://github. conl Sci Pi oneer/ Snart.

git.
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